Capacity-achieving Sparse Superposition Codes via Approximate Message Passing Decoding

Sparse superposition codes were recently introduced by Barron and Joseph for reliable communication over the AWGN channel at rates approaching the channel capacity. The codebook is defined in terms of a Gaussian design matrix, and codewords are sparse linear combinations of columns of the matrix. In this paper, we propose an approximate message passing decoder for sparse superposition codes, whose decoding complexity scales linearly with the size of the design matrix. The performance of the decoder is rigorously analyzed and it is shown to asymptotically achieve the AWGN capacity with an appropriate power allocation. We provide simulation results to demonstrate the performance of the decoder at finite block lengths, and investigate the effects of various power allocations on the decoding performance.
View on arXiv