Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1501.01571
Cited By
An Introduction to Matrix Concentration Inequalities
7 January 2015
J. Tropp
Re-assign community
ArXiv
PDF
HTML
Papers citing
"An Introduction to Matrix Concentration Inequalities"
50 / 193 papers shown
Title
A Unified Theoretical Analysis of Private and Robust Offline Alignment: from RLHF to DPO
Xingyu Zhou
Yulian Wu
Francesco Orabona
OffRL
12
0
0
21 May 2025
Contextual Online Uncertainty-Aware Preference Learning for Human Feedback
Nan Lu
Ethan X. Fang
Junwei Lu
233
0
0
27 Apr 2025
Preconditioned Gradient Descent for Over-Parameterized Nonconvex Matrix Factorization
G. Zhang
S. Fattahi
Richard Y. Zhang
47
36
0
13 Apr 2025
Linear Bandits with Partially Observable Features
Wonyoung Hedge Kim
Sungwoo Park
G. Iyengar
A. Zeevi
Min Hwan Oh
67
0
0
10 Feb 2025
Position: Curvature Matrices Should Be Democratized via Linear Operators
Felix Dangel
Runa Eschenhagen
Weronika Ormaniec
Andres Fernandez
Lukas Tatzel
Agustinus Kristiadi
69
3
0
31 Jan 2025
Pairwise Comparisons without Stochastic Transitivity: Model, Theory and Applications
Sze Ming Lee
Yunxiao Chen
44
0
0
13 Jan 2025
Adaptive Batch Size for Privately Finding Second-Order Stationary Points
Daogao Liu
Kunal Talwar
215
0
0
10 Oct 2024
Provably Accurate Shapley Value Estimation via Leverage Score Sampling
Christopher Musco
R. Teal Witter
FAtt
FedML
TDI
55
2
0
02 Oct 2024
Transformers Handle Endogeneity in In-Context Linear Regression
Haodong Liang
Krishnakumar Balasubramanian
Lifeng Lai
46
1
0
02 Oct 2024
Leveraging Unlabeled Data Sharing through Kernel Function Approximation in Offline Reinforcement Learning
Yen-Ru Lai
Fu-Chieh Chang
Pei-Yuan Wu
OffRL
81
1
0
22 Aug 2024
A Unified Confidence Sequence for Generalized Linear Models, with Applications to Bandits
Junghyun Lee
Se-Young Yun
Kwang-Sung Jun
40
4
0
19 Jul 2024
Loss Gradient Gaussian Width based Generalization and Optimization Guarantees
A. Banerjee
Qiaobo Li
Yingxue Zhou
52
0
0
11 Jun 2024
Gaussian Approximation and Multiplier Bootstrap for Polyak-Ruppert Averaged Linear Stochastic Approximation with Applications to TD Learning
S. Samsonov
Eric Moulines
Qi-Man Shao
Zhuo-Song Zhang
Alexey Naumov
33
4
0
26 May 2024
Generalized Linear Bandits with Limited Adaptivity
Ayush Sawarni
Nirjhar Das
Siddharth Barman
Gaurav Sinha
42
3
0
10 Apr 2024
Preventing Model Collapse in Gaussian Process Latent Variable Models
Ying Li
Zhidi Lin
Feng Yin
Michael Minyi Zhang
VLM
35
1
0
02 Apr 2024
Top-
K
K
K
ranking with a monotone adversary
Yuepeng Yang
Antares Chen
Lorenzo Orecchia
Cong Ma
37
1
0
12 Feb 2024
Generalization Error Curves for Analytic Spectral Algorithms under Power-law Decay
Yicheng Li
Weiye Gan
Zuoqiang Shi
Qian Lin
41
5
0
03 Jan 2024
Weighted least-squares approximation with determinantal point processes and generalized volume sampling
A. Nouy
Bertrand Michel
18
3
0
21 Dec 2023
High Probability Guarantees for Random Reshuffling
Hengxu Yu
Xiao Li
45
2
0
20 Nov 2023
Blind Federated Learning via Over-the-Air q-QAM
Saeed Razavikia
José Hélio da Cruz Júnior
Carlo Fischione
50
4
0
07 Nov 2023
Farzi Data: Autoregressive Data Distillation
Noveen Sachdeva
Zexue He
Wang-Cheng Kang
Jianmo Ni
D. Cheng
Julian McAuley
DD
35
3
0
15 Oct 2023
On Robust Recovery of Signals from Indirect Observations
Yannis Bekri
A. Juditsky
A. Nemirovski
23
2
0
12 Sep 2023
The Relative Gaussian Mechanism and its Application to Private Gradient Descent
Hadrien Hendrikx
Paul Mangold
A. Bellet
38
1
0
29 Aug 2023
High Dimensional Distributed Gradient Descent with Arbitrary Number of Byzantine Attackers
Puning Zhao
Zhiguo Wan
OOD
FedML
47
4
0
25 Jul 2023
Partial Inference in Structured Prediction
Chuyang Ke
Jean Honorio
23
0
0
06 Jun 2023
High-probability sample complexities for policy evaluation with linear function approximation
Gen Li
Weichen Wu
Yuejie Chi
Cong Ma
Alessandro Rinaldo
Yuting Wei
OffRL
35
7
0
30 May 2023
ReSync: Riemannian Subgradient-based Robust Rotation Synchronization
Huikang Liu
Xiao Li
Anthony Man-Cho So
32
3
0
24 May 2023
Stochastic Nonlinear Control via Finite-dimensional Spectral Dynamic Embedding
Tongzheng Ren
Zhaolin Ren
Haitong Ma
Na Li
Bo Dai
30
10
0
08 Apr 2023
Score Attack: A Lower Bound Technique for Optimal Differentially Private Learning
T. Tony Cai
Yichen Wang
Linjun Zhang
46
16
0
13 Mar 2023
Deflated HeteroPCA: Overcoming the curse of ill-conditioning in heteroskedastic PCA
Yuchen Zhou
Yuxin Chen
45
4
0
10 Mar 2023
Learning Hidden Markov Models Using Conditional Samples
Sham Kakade
A. Krishnamurthy
G. Mahajan
Cyril Zhang
21
6
0
28 Feb 2023
Gauss-Newton Temporal Difference Learning with Nonlinear Function Approximation
Zhifa Ke
Junyu Zhang
Zaiwen Wen
24
0
0
25 Feb 2023
Dynamic Regret Analysis of Safe Distributed Online Optimization for Convex and Non-convex Problems
Ting-Jui Chang
Sapana Chaudhary
D. Kalathil
Shahin Shahrampour
28
5
0
23 Feb 2023
Unified Convergence Theory of Stochastic and Variance-Reduced Cubic Newton Methods
El Mahdi Chayti
N. Doikov
Martin Jaggi
ODL
27
6
0
23 Feb 2023
Faster Riemannian Newton-type Optimization by Subsampling and Cubic Regularization
Yian Deng
Tingting Mu
26
1
0
22 Feb 2023
Private (Stochastic) Non-Convex Optimization Revisited: Second-Order Stationary Points and Excess Risks
Arun Ganesh
Daogao Liu
Sewoong Oh
Abhradeep Thakurta
ODL
34
13
0
20 Feb 2023
Similarity, Compression and Local Steps: Three Pillars of Efficient Communications for Distributed Variational Inequalities
Aleksandr Beznosikov
Martin Takáč
Alexander Gasnikov
31
10
0
15 Feb 2023
Multi-task Representation Learning for Pure Exploration in Linear Bandits
Yihan Du
Longbo Huang
Wen Sun
25
4
0
09 Feb 2023
The SSL Interplay: Augmentations, Inductive Bias, and Generalization
Vivien A. Cabannes
B. Kiani
Randall Balestriero
Yann LeCun
A. Bietti
SSL
29
31
0
06 Feb 2023
Using Intermediate Forward Iterates for Intermediate Generator Optimization
Harshit Mishra
Jurijs Nazarovs
Manmohan Dogra
Sathya Ravi
DiffM
27
0
0
05 Feb 2023
Combinatorial Inference on the Optimal Assortment in Multinomial Logit Models
Shuting Shen
Xi Chen
Ethan X. Fang
Junwei Lu
25
2
0
28 Jan 2023
A Distribution Free Truncated Kernel Ridge Regression Estimator and Related Spectral Analyses
Asma Ben Saber
Abderrazek Karoui
15
1
0
17 Jan 2023
Matching calipers and the precision of index estimation
B. Hansen
15
0
0
10 Jan 2023
Quantizing Heavy-tailed Data in Statistical Estimation: (Near) Minimax Rates, Covariate Quantization, and Uniform Recovery
Junren Chen
Michael Kwok-Po Ng
Di Wang
MQ
28
13
0
30 Dec 2022
Synthetic Principal Component Design: Fast Covariate Balancing with Synthetic Controls
Yiping Lu
Jiajin Li
Lexing Ying
Jose H. Blanchet
19
2
0
28 Nov 2022
Perfect Sampling from Pairwise Comparisons
Dimitris Fotakis
Alkis Kalavasis
Christos Tzamos
26
3
0
23 Nov 2022
Mutual Information Learned Regressor: an Information-theoretic Viewpoint of Training Regression Systems
Jirong Yi
Q. Zhang
Zhengbo Chen
Qiaoan Liu
Weizhuo Shao
Yusen He
Yao Wang
SSL
30
0
0
23 Nov 2022
A Generalized Latent Factor Model Approach to Mixed-data Matrix Completion with Entrywise Consistency
Yunxiao Chen
Xiaoou Li
29
0
0
17 Nov 2022
Spectral Regularization Allows Data-frugal Learning over Combinatorial Spaces
Amirali Aghazadeh
Nived Rajaraman
Tony Tu
Kannan Ramchandran
27
2
0
05 Oct 2022
Improved covariance estimation: optimal robustness and sub-Gaussian guarantees under heavy tails
R. I. Oliveira
Zoraida F. Rico
38
10
0
27 Sep 2022
1
2
3
4
Next