ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1412.7299
  4. Cited By
Particle Metropolis-adjusted Langevin algorithms

Particle Metropolis-adjusted Langevin algorithms

23 December 2014
Christopher Nemeth
Chris Sherlock
Paul Fearnhead
ArXivPDFHTML

Papers citing "Particle Metropolis-adjusted Langevin algorithms"

14 / 14 papers shown
Title
Efficiently handling constraints with Metropolis-adjusted Langevin algorithm
Jinyuan Chang
C. Tang
Yuanzheng Zhu
16
1
0
23 Feb 2023
Accelerating inference for stochastic kinetic models
Accelerating inference for stochastic kinetic models
Tom Lowe
Andrew Golightly
Chris Sherlock
11
5
0
06 Jun 2022
Continuous close-range 3D object pose estimation
Continuous close-range 3D object pose estimation
Bjarne Großmann
Francesco Rovida
V. Krüger
15
1
0
02 Oct 2020
Simulation-based inference methods for partially observed Markov model
  via the R package is2
Simulation-based inference methods for partially observed Markov model via the R package is2
Bernhard Bergmair
Johann Hoffelner
Siegfried Silber
13
0
0
07 Nov 2018
Large Sample Asymptotics of the Pseudo-Marginal Method
Large Sample Asymptotics of the Pseudo-Marginal Method
Sebastian M. Schmon
George Deligiannidis
Arnaud Doucet
M. Pitt
14
31
0
26 Jun 2018
Correlated pseudo-marginal Metropolis-Hastings using quasi-Newton
  proposals
Correlated pseudo-marginal Metropolis-Hastings using quasi-Newton proposals
J. Dahlin
A. Wills
B. Ninness
11
0
0
26 Jun 2018
Constructing Metropolis-Hastings proposals using damped BFGS updates
Constructing Metropolis-Hastings proposals using damped BFGS updates
J. Dahlin
A. Wills
B. Ninness
14
2
0
04 Jan 2018
Particle Filters and Data Assimilation
Particle Filters and Data Assimilation
Paul Fearnhead
H. Kunsch
6
81
0
13 Sep 2017
Hamiltonian Monte Carlo with Energy Conserving Subsampling
Hamiltonian Monte Carlo with Energy Conserving Subsampling
Khue-Dung Dang
M. Quiroz
Robert Kohn
Minh-Ngoc Tran
M. Villani
25
62
0
02 Aug 2017
A Common Derivation for Markov Chain Monte Carlo Algorithms with
  Tractable and Intractable Targets
A Common Derivation for Markov Chain Monte Carlo Algorithms with Tractable and Intractable Targets
K. Tran
BDL
16
2
0
07 Jul 2016
Getting Started with Particle Metropolis-Hastings for Inference in
  Nonlinear Dynamical Models
Getting Started with Particle Metropolis-Hastings for Inference in Nonlinear Dynamical Models
J. Dahlin
Thomas B. Schon
23
25
0
05 Nov 2015
Quasi-Newton particle Metropolis-Hastings
Quasi-Newton particle Metropolis-Hastings
J. Dahlin
Fredrik Lindsten
Thomas B. Schon
27
9
0
12 Feb 2015
Augmentation Schemes for Particle MCMC
Augmentation Schemes for Particle MCMC
Paul Fearnhead
Loukia Meligkotsidou
36
19
0
29 Aug 2014
Exploiting Multi-Core Architectures for Reduced-Variance Estimation with
  Intractable Likelihoods
Exploiting Multi-Core Architectures for Reduced-Variance Estimation with Intractable Likelihoods
Nial Friel
Antonietta Mira
Chris J. Oates
27
26
0
20 Aug 2014
1