Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1412.6830
Cited By
Learning Activation Functions to Improve Deep Neural Networks
21 December 2014
Forest Agostinelli
Matthew Hoffman
Peter Sadowski
Pierre Baldi
ODL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning Activation Functions to Improve Deep Neural Networks"
49 / 49 papers shown
Title
Kolmogorov-Arnold Networks in Low-Data Regimes: A Comparative Study with Multilayer Perceptrons
Farhad Pourkamali-Anaraki
35
5
0
16 Sep 2024
Controlled Learning of Pointwise Nonlinearities in Neural-Network-Like Architectures
Michael Unser
Alexis Goujon
Stanislas Ducotterd
29
2
0
23 Aug 2024
Nonlinearity Enhanced Adaptive Activation Functions
David Yevick
22
1
0
29 Mar 2024
Physics-informed Deep Learning to Solve Three-dimensional Terzaghi Consolidation Equation: Forward and Inverse Problems
Biao Yuan
Ana Heitor
He Wang
Xiaohui Chen
AI4CE
PINN
34
1
0
08 Jan 2024
Learning Specialized Activation Functions for Physics-informed Neural Networks
Honghui Wang
Lu Lu
Shiji Song
Gao Huang
PINN
AI4CE
16
11
0
08 Aug 2023
ENN: A Neural Network with DCT Adaptive Activation Functions
Marc Martinez-Gost
Ana I. Pérez-Neira
M. Lagunas
AAML
11
6
0
02 Jul 2023
When Deep Learning Meets Polyhedral Theory: A Survey
Joey Huchette
Gonzalo Muñoz
Thiago Serra
Calvin Tsay
AI4CE
94
32
0
29 Apr 2023
Empirical study of the modulus as activation function in computer vision applications
Iván Vallés-Pérez
E. Soria-Olivas
M. Martínez-Sober
Antonio J. Serrano
Joan Vila-Francés
J. Gómez-Sanchís
13
15
0
15 Jan 2023
Efficient Activation Function Optimization through Surrogate Modeling
G. Bingham
Risto Miikkulainen
16
2
0
13 Jan 2023
Improving Lipschitz-Constrained Neural Networks by Learning Activation Functions
Stanislas Ducotterd
Alexis Goujon
Pakshal Bohra
Dimitris Perdios
Sebastian Neumayer
M. Unser
35
12
0
28 Oct 2022
How important are activation functions in regression and classification? A survey, performance comparison, and future directions
Ameya Dilip Jagtap
George Karniadakis
AI4CE
31
71
0
06 Sep 2022
Neural Networks with A La Carte Selection of Activation Functions
Moshe Sipper
13
7
0
24 Jun 2022
Evolution of Activation Functions for Deep Learning-Based Image Classification
Raz Lapid
Moshe Sipper
19
11
0
24 Jun 2022
On the Number of Regions of Piecewise Linear Neural Networks
Alexis Goujon
Arian Etemadi
M. Unser
44
13
0
17 Jun 2022
Activation Functions in Deep Learning: A Comprehensive Survey and Benchmark
S. Dubey
S. Singh
B. B. Chaudhuri
41
641
0
29 Sep 2021
PowerLinear Activation Functions with application to the first layer of CNNs
Kamyar Nasiri
Kamaledin Ghiasi-Shirazi
11
0
0
20 Aug 2021
Comparison of different convolutional neural network activation functions and methods for building ensembles
L. Nanni
Gianluca Maguolo
S. Brahnam
M. Paci
16
8
0
29 Mar 2021
Privacy and Trust Redefined in Federated Machine Learning
Pavlos Papadopoulos
Will Abramson
A. Hall
Nikolaos Pitropakis
William J. Buchanan
33
42
0
29 Mar 2021
Improving epidemic testing and containment strategies using machine learning
Laura Natali
Saga Helgadottir
O. Maragò
Giovanni Volpe
24
6
0
23 Nov 2020
Parametric Flatten-T Swish: An Adaptive Non-linear Activation Function For Deep Learning
Hock Hung Chieng
Noorhaniza Wahid
P. Ong
21
6
0
06 Nov 2020
Hyperparameter Transfer Across Developer Adjustments
Daniel Stoll
Jörg Franke
Diane Wagner
Simon Selg
Frank Hutter
27
12
0
25 Oct 2020
Review: Deep Learning in Electron Microscopy
Jeffrey M. Ede
31
79
0
17 Sep 2020
SPLASH: Learnable Activation Functions for Improving Accuracy and Adversarial Robustness
Mohammadamin Tavakoli
Forest Agostinelli
Pierre Baldi
AAML
FAtt
36
39
0
16 Jun 2020
Scalable Partial Explainability in Neural Networks via Flexible Activation Functions
S. Sun
Chen Li
Zhuangkun Wei
Antonios Tsourdos
Weisi Guo
FAtt
29
2
0
10 Jun 2020
Deep Learning for Change Detection in Remote Sensing Images: Comprehensive Review and Meta-Analysis
Lazhar Khelifi
M. Mignotte
28
259
0
10 Jun 2020
Sherpa: Robust Hyperparameter Optimization for Machine Learning
L. Hertel
Julian Collado
Peter Sadowski
J. Ott
Pierre Baldi
86
103
0
08 May 2020
A Survey on Activation Functions and their relation with Xavier and He Normal Initialization
Leonid Datta
AI4CE
15
68
0
18 Mar 2020
Efficient Continual Learning in Neural Networks with Embedding Regularization
Jary Pomponi
Simone Scardapane
Vincenzo Lomonaco
A. Uncini
CLL
30
41
0
09 Sep 2019
Padé Activation Units: End-to-end Learning of Flexible Activation Functions in Deep Networks
Alejandro Molina
P. Schramowski
Kristian Kersting
ODL
23
77
0
15 Jul 2019
Ensemble of Convolutional Neural Networks Trained with Different Activation Functions
Gianluca Maguolo
L. Nanni
Stefano Ghidoni
18
62
0
07 May 2019
Optimization Problems for Machine Learning: A Survey
Claudio Gambella
Bissan Ghaddar
Joe Naoum-Sawaya
AI4CE
30
178
0
16 Jan 2019
Deep Asymmetric Networks with a Set of Node-wise Variant Activation Functions
Jinhyeok Jang
Hyunjoong Cho
Jaehong Kim
Jaeyeon Lee
Seungjoon Yang
18
2
0
11 Sep 2018
Neural Network Encapsulation
Hongyang Li
Xiaoyang Guo
Bo Dai
Wanli Ouyang
Xiaogang Wang
21
51
0
11 Aug 2018
Adaptive Blending Units: Trainable Activation Functions for Deep Neural Networks
L. R. Sütfeld
Flemming Brieger
Holger Finger
S. Füllhase
G. Pipa
20
28
0
26 Jun 2018
Frank-Wolfe Network: An Interpretable Deep Structure for Non-Sparse Coding
Dong Liu
Ke Sun
Zhangyang Wang
Runsheng Liu
Zhengjun Zha
24
12
0
28 Feb 2018
A representer theorem for deep neural networks
M. Unser
27
98
0
26 Feb 2018
Complex-valued Neural Networks with Non-parametric Activation Functions
Simone Scardapane
S. Van Vaerenbergh
Amir Hussain
A. Uncini
23
81
0
22 Feb 2018
Learning Combinations of Activation Functions
Franco Manessi
A. Rozza
AI4CE
26
54
0
29 Jan 2018
Stochastic Training of Neural Networks via Successive Convex Approximations
Simone Scardapane
P. Di Lorenzo
16
9
0
15 Jun 2017
Evolving Parsimonious Networks by Mixing Activation Functions
Alexander Hagg
Maximilian Mensing
A. Asteroth
24
33
0
21 Mar 2017
Activation Ensembles for Deep Neural Networks
Mark Harmon
Diego Klabjan
23
35
0
24 Feb 2017
Training Skinny Deep Neural Networks with Iterative Hard Thresholding Methods
Xiaojie Jin
Xiao-Tong Yuan
Jiashi Feng
Shuicheng Yan
8
78
0
19 Jul 2016
Parametric Exponential Linear Unit for Deep Convolutional Neural Networks
Ludovic Trottier
Philippe Giguère
B. Chaib-draa
36
199
0
30 May 2016
Deep Residual Networks with Exponential Linear Unit
Anish Shah
Eashan Kadam
Hena Shah
Sameer Shinde
Sandip Shingade
33
120
0
14 Apr 2016
Multi-Bias Non-linear Activation in Deep Neural Networks
Hongyang Li
Wanli Ouyang
Xiaogang Wang
15
64
0
03 Apr 2016
Deep Networks with Stochastic Depth
Gao Huang
Yu Sun
Zhuang Liu
Daniel Sedra
Kilian Q. Weinberger
44
2,336
0
30 Mar 2016
Normalization Propagation: A Parametric Technique for Removing Internal Covariate Shift in Deep Networks
Devansh Arpit
Yingbo Zhou
Bhargava U. Kota
V. Govindaraju
13
126
0
04 Mar 2016
Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification
Kaiming He
Xinming Zhang
Shaoqing Ren
Jian Sun
VLM
29
18,444
0
06 Feb 2015
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
266
7,636
0
03 Jul 2012
1