ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1412.6572
  4. Cited By
Explaining and Harnessing Adversarial Examples

Explaining and Harnessing Adversarial Examples

20 December 2014
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
    AAML
    GAN
ArXivPDFHTML

Papers citing "Explaining and Harnessing Adversarial Examples"

10 / 3,760 papers shown
Title
Evaluating the visualization of what a Deep Neural Network has learned
Evaluating the visualization of what a Deep Neural Network has learned
Wojciech Samek
Alexander Binder
G. Montavon
Sebastian Lapuschkin
K. Müller
XAI
74
1,180
0
21 Sep 2015
What is Holding Back Convnets for Detection?
What is Holding Back Convnets for Detection?
Bojan Pepik
Rodrigo Benenson
Tobias Ritschel
Bernt Schiele
ObjD
24
64
0
12 Aug 2015
Deep Learning and Music Adversaries
Deep Learning and Music Adversaries
Corey Kereliuk
Bob L. T. Sturm
J. Larsen
AAML
24
136
0
16 Jul 2015
Dropout as data augmentation
Dropout as data augmentation
Xavier Bouthillier
K. Konda
Pascal Vincent
Roland Memisevic
43
133
0
29 Jun 2015
Understanding Neural Networks Through Deep Visualization
Understanding Neural Networks Through Deep Visualization
J. Yosinski
Jeff Clune
Anh Totti Nguyen
Thomas J. Fuchs
Hod Lipson
FAtt
AI4CE
69
1,864
0
22 Jun 2015
Lateral Connections in Denoising Autoencoders Support Supervised
  Learning
Lateral Connections in Denoising Autoencoders Support Supervised Learning
Antti Rasmus
Harri Valpola
T. Raiko
38
22
0
30 Apr 2015
Analysis of classifiers' robustness to adversarial perturbations
Analysis of classifiers' robustness to adversarial perturbations
Alhussein Fawzi
Omar Fawzi
P. Frossard
AAML
46
361
0
09 Feb 2015
Visual Causal Feature Learning
Visual Causal Feature Learning
Krzysztof Chalupka
Pietro Perona
F. Eberhardt
CML
OOD
28
139
0
07 Dec 2014
Deep Neural Networks are Easily Fooled: High Confidence Predictions for
  Unrecognizable Images
Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images
Anh Totti Nguyen
J. Yosinski
Jeff Clune
AAML
90
3,248
0
05 Dec 2014
Qualitative Robustness in Bayesian Inference
Qualitative Robustness in Bayesian Inference
H. Owhadi
C. Scovel
56
26
0
14 Nov 2014
Previous
123...747576