Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1412.6572
Cited By
v1
v2
v3 (latest)
Explaining and Harnessing Adversarial Examples
20 December 2014
Ian Goodfellow
Jonathon Shlens
Christian Szegedy
AAML
GAN
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Explaining and Harnessing Adversarial Examples"
50 / 8,339 papers shown
Title
Unravelling Robustness of Deep Learning based Face Recognition Against Adversarial Attacks
Gaurav Goswami
Nalini Ratha
Akshay Agarwal
Richa Singh
Mayank Vatsa
AAML
97
166
0
22 Feb 2018
The Hidden Vulnerability of Distributed Learning in Byzantium
El-Mahdi El-Mhamdi
R. Guerraoui
Sébastien Rouault
AAML
FedML
79
769
0
22 Feb 2018
Adversarial Training for Probabilistic Spiking Neural Networks
Alireza Bagheri
Osvaldo Simeone
Bipin Rajendran
AAML
54
26
0
22 Feb 2018
L2-Nonexpansive Neural Networks
Haifeng Qian
M. Wegman
75
74
0
22 Feb 2018
Generalizable Adversarial Examples Detection Based on Bi-model Decision Mismatch
João Monteiro
Isabela Albuquerque
Zahid Akhtar
T. Falk
AAML
90
29
0
21 Feb 2018
Interpreting Neural Network Judgments via Minimal, Stable, and Symbolic Corrections
Xin Zhang
Armando Solar-Lezama
Rishabh Singh
FAtt
115
63
0
21 Feb 2018
Attack Strength vs. Detectability Dilemma in Adversarial Machine Learning
Christopher Frederickson
Michael Moore
Glenn Dawson
R. Polikar
AAML
62
33
0
20 Feb 2018
Shield: Fast, Practical Defense and Vaccination for Deep Learning using JPEG Compression
Nilaksh Das
Madhuri Shanbhogue
Shang-Tse Chen
Fred Hohman
Siwei Li
Li-Wei Chen
Michael E. Kounavis
Duen Horng Chau
FedML
AAML
85
228
0
19 Feb 2018
Divide, Denoise, and Defend against Adversarial Attacks
Seyed-Mohsen Moosavi-Dezfooli
A. Shrivastava
Oncel Tuzel
AAML
57
45
0
19 Feb 2018
Are Generative Classifiers More Robust to Adversarial Attacks?
Yingzhen Li
John Bradshaw
Yash Sharma
AAML
102
79
0
19 Feb 2018
Bayesian Uncertainty Estimation for Batch Normalized Deep Networks
Mattias Teye
Hossein Azizpour
Kevin Smith
BDL
UQCV
172
241
0
18 Feb 2018
DARTS: Deceiving Autonomous Cars with Toxic Signs
Chawin Sitawarin
A. Bhagoji
Arsalan Mosenia
M. Chiang
Prateek Mittal
AAML
117
236
0
18 Feb 2018
Security and Privacy Approaches in Mixed Reality: A Literature Survey
Jaybie A. de Guzman
Kanchana Thilakarathna
Aruna Seneviratne
77
135
0
15 Feb 2018
ASP:A Fast Adversarial Attack Example Generation Framework based on Adversarial Saliency Prediction
Fuxun Yu
Qide Dong
Xiang Chen
AAML
62
6
0
15 Feb 2018
Adversarial Risk and the Dangers of Evaluating Against Weak Attacks
J. Uesato
Brendan O'Donoghue
Aaron van den Oord
Pushmeet Kohli
AAML
185
606
0
15 Feb 2018
Fooling OCR Systems with Adversarial Text Images
Congzheng Song
Vitaly Shmatikov
AAML
61
51
0
15 Feb 2018
Stealing Hyperparameters in Machine Learning
Binghui Wang
Neil Zhenqiang Gong
AAML
178
467
0
14 Feb 2018
Security Analysis and Enhancement of Model Compressed Deep Learning Systems under Adversarial Attacks
Qi Liu
Tao Liu
Zihao Liu
Yanzhi Wang
Yier Jin
Wujie Wen
AAML
68
48
0
14 Feb 2018
Learning Confidence for Out-of-Distribution Detection in Neural Networks
Terrance Devries
Graham W. Taylor
OOD
OODD
90
592
0
13 Feb 2018
Identify Susceptible Locations in Medical Records via Adversarial Attacks on Deep Predictive Models
Mengying Sun
Fengyi Tang
Jinfeng Yi
Fei Wang
Jiayu Zhou
AAML
OOD
MedIm
85
63
0
13 Feb 2018
Modeling of Facial Aging and Kinship: A Survey
Markos Georgopoulos
Yannis Panagakis
Maja Pantic
CVBM
59
26
0
13 Feb 2018
Turning Your Weakness Into a Strength: Watermarking Deep Neural Networks by Backdooring
Yossi Adi
Carsten Baum
Moustapha Cissé
Benny Pinkas
Joseph Keshet
78
685
0
13 Feb 2018
Deceiving End-to-End Deep Learning Malware Detectors using Adversarial Examples
Felix Kreuk
A. Barak
Shir Aviv-Reuven
Moran Baruch
Benny Pinkas
Joseph Keshet
AAML
75
118
0
13 Feb 2018
Lipschitz-Margin Training: Scalable Certification of Perturbation Invariance for Deep Neural Networks
Yusuke Tsuzuku
Issei Sato
Masashi Sugiyama
AAML
117
309
0
12 Feb 2018
Critères de qualité dún classifieur généraliste
Gilles R. Ducharme
27
1
0
10 Feb 2018
Certified Robustness to Adversarial Examples with Differential Privacy
Mathias Lécuyer
Vaggelis Atlidakis
Roxana Geambasu
Daniel J. Hsu
Suman Jana
SILM
AAML
131
940
0
09 Feb 2018
Adversarial Metric Learning
Shuo Chen
Chen Gong
Jian Yang
Xiang Li
Yang Wei
Jun Yu Li
80
46
0
09 Feb 2018
Few-shot learning of neural networks from scratch by pseudo example optimization
Akisato Kimura
Zoubin Ghahramani
Koh Takeuchi
Tomoharu Iwata
N. Ueda
94
52
0
08 Feb 2018
TSViz: Demystification of Deep Learning Models for Time-Series Analysis
Shoaib Ahmed Siddiqui
Dominique Mercier
Mohsin Munir
Andreas Dengel
Sheraz Ahmed
FAtt
AI4TS
115
84
0
08 Feb 2018
VISER: Visual Self-Regularization
Hamid Izadinia
Pierre Garrigues
SSL
75
4
0
07 Feb 2018
ShakeDrop Regularization for Deep Residual Learning
Yoshihiro Yamada
Masakazu Iwamura
Takuya Akiba
K. Kise
119
164
0
07 Feb 2018
Recent Advances in Neural Program Synthesis
Neel Kant
NAI
106
37
0
07 Feb 2018
ClassSim: Similarity between Classes Defined by Misclassification Ratios of Trained Classifiers
Kazuma Arino
Yohei Kikuta
33
1
0
05 Feb 2018
Causal Learning and Explanation of Deep Neural Networks via Autoencoded Activations
M. Harradon
Jeff Druce
Brian E. Ruttenberg
BDL
CML
53
82
0
02 Feb 2018
Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adversarial Examples
Anish Athalye
Nicholas Carlini
D. Wagner
AAML
301
3,197
0
01 Feb 2018
Evaluating the Robustness of Neural Networks: An Extreme Value Theory Approach
Tsui-Wei Weng
Huan Zhang
Pin-Yu Chen
Jinfeng Yi
D. Su
Yupeng Gao
Cho-Jui Hsieh
Luca Daniel
AAML
85
469
0
31 Jan 2018
Certified Defenses against Adversarial Examples
Aditi Raghunathan
Jacob Steinhardt
Percy Liang
AAML
130
969
0
29 Jan 2018
Deflecting Adversarial Attacks with Pixel Deflection
Aaditya (Adi) Prakash
N. Moran
Solomon Garber
Antonella DiLillo
J. Storer
AAML
110
304
0
26 Jan 2018
Learning to Evade Static PE Machine Learning Malware Models via Reinforcement Learning
Hyrum S. Anderson
Anant Kharkar
Bobby Filar
David Evans
P. Roth
AAML
90
210
0
26 Jan 2018
CommanderSong: A Systematic Approach for Practical Adversarial Voice Recognition
Xuejing Yuan
Yuxuan Chen
Yue Zhao
Yunhui Long
Xiaokang Liu
Kai Chen
Shengzhi Zhang
Heqing Huang
Wenyuan Xu
Carl A. Gunter
AAML
121
356
0
24 Jan 2018
Generalizable Data-free Objective for Crafting Universal Adversarial Perturbations
Konda Reddy Mopuri
Aditya Ganeshan
R. Venkatesh Babu
AAML
151
206
0
24 Jan 2018
Adversarial Texts with Gradient Methods
Zhitao Gong
Wenlu Wang
Yangqiu Song
Basel Alomair
Wei-Shinn Ku
AAML
106
77
0
22 Jan 2018
Visual Analytics in Deep Learning: An Interrogative Survey for the Next Frontiers
Fred Hohman
Minsuk Kahng
Robert S. Pienta
Duen Horng Chau
OOD
HAI
103
541
0
21 Jan 2018
Localization-Aware Active Learning for Object Detection
Chieh-Chi Kao
Teng-Yok Lee
P. Sen
Ming-Yuan Liu
ObjD
78
122
0
16 Jan 2018
Towards Imperceptible and Robust Adversarial Example Attacks against Neural Networks
Bo Luo
Yannan Liu
Lingxiao Wei
Q. Xu
AAML
65
142
0
15 Jan 2018
Black-box Generation of Adversarial Text Sequences to Evade Deep Learning Classifiers
Ji Gao
Jack Lanchantin
M. Soffa
Yanjun Qi
AAML
166
727
0
13 Jan 2018
A3T: Adversarially Augmented Adversarial Training
Akram Erraqabi
A. Baratin
Yoshua Bengio
Simon Lacoste-Julien
AAML
94
9
0
12 Jan 2018
Fooling End-to-end Speaker Verification by Adversarial Examples
Felix Kreuk
Yossi Adi
Moustapha Cissé
Joseph Keshet
AAML
86
203
0
10 Jan 2018
Adversarial Deep Learning for Robust Detection of Binary Encoded Malware
Abdullah Al-Dujaili
Alex Huang
Erik Hemberg
Una-May O’Reilly
AAML
107
188
0
09 Jan 2018
Less is More: Culling the Training Set to Improve Robustness of Deep Neural Networks
Yongshuai Liu
Jiyu Chen
Hao Chen
AAML
85
14
0
09 Jan 2018
Previous
1
2
3
...
159
160
161
...
165
166
167
Next