ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1412.5492
  4. Cited By
Transport map accelerated Markov chain Monte Carlo

Transport map accelerated Markov chain Monte Carlo

17 December 2014
M. Parno
Youssef Marzouk
    OT
ArXivPDFHTML

Papers citing "Transport map accelerated Markov chain Monte Carlo"

29 / 29 papers shown
Title
Hamiltonian Monte Carlo Inference of Marginalized Linear Mixed-Effects Models
Hamiltonian Monte Carlo Inference of Marginalized Linear Mixed-Effects Models
Jinlin Lai
Justin Domke
Daniel Sheldon
26
0
0
31 Oct 2024
NETS: A Non-Equilibrium Transport Sampler
NETS: A Non-Equilibrium Transport Sampler
M. S. Albergo
Eric Vanden-Eijnden
DiffM
43
9
0
03 Oct 2024
Combining Normalizing Flows and Quasi-Monte Carlo
Combining Normalizing Flows and Quasi-Monte Carlo
Charly Andral
BDL
27
1
0
11 Jan 2024
Balanced Training of Energy-Based Models with Adaptive Flow Sampling
Balanced Training of Energy-Based Models with Adaptive Flow Sampling
Louis Grenioux
Eric Moulines
Marylou Gabrié
13
2
0
01 Jun 2023
Aspects of scaling and scalability for flow-based sampling of lattice
  QCD
Aspects of scaling and scalability for flow-based sampling of lattice QCD
Ryan Abbott
M. S. Albergo
Aleksandar Botev
D. Boyda
Kyle Cranmer
...
Ali Razavi
Danilo Jimenez Rezende
F. Romero-López
P. Shanahan
Julian M. Urban
26
33
0
14 Nov 2022
Transport Reversible Jump Proposals
Transport Reversible Jump Proposals
L. Davies
Roberto Salomone
Matthew Sutton
Christopher C. Drovandi
BDL
21
1
0
22 Oct 2022
Deep importance sampling using tensor trains with application to a
  priori and a posteriori rare event estimation
Deep importance sampling using tensor trains with application to a priori and a posteriori rare event estimation
Tiangang Cui
S. Dolgov
Robert Scheichl
39
3
0
05 Sep 2022
Bayesian model calibration for block copolymer self-assembly:
  Likelihood-free inference and expected information gain computation via
  measure transport
Bayesian model calibration for block copolymer self-assembly: Likelihood-free inference and expected information gain computation via measure transport
Ricardo Baptista
Lianghao Cao
Joshua Chen
Omar Ghattas
Fengyi Li
Youssef M. Marzouk
J. Oden
21
11
0
22 Jun 2022
Deterministic Langevin Monte Carlo with Normalizing Flows for Bayesian
  Inference
Deterministic Langevin Monte Carlo with Normalizing Flows for Bayesian Inference
R. Grumitt
B. Dai
U. Seljak
BDL
24
12
0
27 May 2022
hIPPYlib-MUQ: A Bayesian Inference Software Framework for Integration of
  Data with Complex Predictive Models under Uncertainty
hIPPYlib-MUQ: A Bayesian Inference Software Framework for Integration of Data with Complex Predictive Models under Uncertainty
Ki-tae Kim
Umberto Villa
M. Parno
Youssef Marzouk
Omar Ghattas
N. Petra
17
18
0
01 Dec 2021
Multifidelity multilevel Monte Carlo to accelerate approximate Bayesian
  parameter inference for partially observed stochastic processes
Multifidelity multilevel Monte Carlo to accelerate approximate Bayesian parameter inference for partially observed stochastic processes
D. Warne
Thomas P. Prescott
Ruth Baker
Matthew J. Simpson
20
15
0
26 Oct 2021
Multilevel Stein variational gradient descent with applications to
  Bayesian inverse problems
Multilevel Stein variational gradient descent with applications to Bayesian inverse problems
Terrence Alsup
Luca Venturi
Benjamin Peherstorfer
11
5
0
05 Apr 2021
Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC
Sampling in Combinatorial Spaces with SurVAE Flow Augmented MCMC
P. Jaini
Didrik Nielsen
Max Welling
BDL
35
10
0
04 Feb 2021
Faster Uncertainty Quantification for Inverse Problems with Conditional
  Normalizing Flows
Faster Uncertainty Quantification for Inverse Problems with Conditional Normalizing Flows
Ali Siahkoohi
G. Rizzuti
Philipp A. Witte
Felix J. Herrmann
AI4CE
14
16
0
15 Jul 2020
Deep composition of tensor-trains using squared inverse Rosenblatt
  transports
Deep composition of tensor-trains using squared inverse Rosenblatt transports
Tiangang Cui
S. Dolgov
OT
20
33
0
14 Jul 2020
Iterative Construction of Gaussian Process Surrogate Models for Bayesian
  Inference
Iterative Construction of Gaussian Process Surrogate Models for Bayesian Inference
Leen Alawieh
J. Goodman
J. Bell
30
4
0
17 Nov 2019
Transport Monte Carlo: High-Accuracy Posterior Approximation via Random
  Transport
Transport Monte Carlo: High-Accuracy Posterior Approximation via Random Transport
L. Duan
OT
21
11
0
24 Jul 2019
Bayesian Inference with Generative Adversarial Network Priors
Bayesian Inference with Generative Adversarial Network Priors
Dhruv V. Patel
Assad A. Oberai
GAN
AI4CE
25
17
0
22 Jul 2019
A geometric approach to the transport of discontinuous densities
A geometric approach to the transport of discontinuous densities
Caroline Moosmüller
Felix Dietrich
Ioannis G. Kevrekidis
OT
11
8
0
18 Jul 2019
NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural
  Transport
NeuTra-lizing Bad Geometry in Hamiltonian Monte Carlo Using Neural Transport
Matthew Hoffman
Pavel Sountsov
Joshua V. Dillon
I. Langmore
Dustin Tran
Srinivas Vasudevan
BDL
24
103
0
09 Mar 2019
Scalable optimization-based sampling on function space
Scalable optimization-based sampling on function space
Johnathan M. Bardsley
Tiangang Cui
Youssef Marzouk
Zheng Wang
27
17
0
03 Mar 2019
Dynamically rescaled Hamiltonian Monte Carlo for Bayesian Hierarchical
  Models
Dynamically rescaled Hamiltonian Monte Carlo for Bayesian Hierarchical Models
T. S. Kleppe
32
11
0
06 Jun 2018
Beyond normality: Learning sparse probabilistic graphical models in the
  non-Gaussian setting
Beyond normality: Learning sparse probabilistic graphical models in the non-Gaussian setting
Rebecca E. Morrison
Ricardo Baptista
Youssef Marzouk
CML
27
26
0
02 Nov 2017
Inference via low-dimensional couplings
Inference via low-dimensional couplings
Alessio Spantini
Daniele Bigoni
Youssef Marzouk
27
119
0
17 Mar 2017
Sequential Bayesian optimal experimental design via approximate dynamic
  programming
Sequential Bayesian optimal experimental design via approximate dynamic programming
Xun Huan
Youssef M. Marzouk
29
66
0
28 Apr 2016
An introduction to sampling via measure transport
An introduction to sampling via measure transport
Youssef Marzouk
Tarek A. El-Moselhy
M. Parno
Alessio Spantini
OT
38
88
0
16 Feb 2016
Iterative Gaussianization: from ICA to Random Rotations
Iterative Gaussianization: from ICA to Random Rotations
Valero Laparra
Gustavo Camps-Valls
Jesús Malo
64
125
0
31 Jan 2016
Variable transformation to obtain geometric ergodicity in the
  random-walk Metropolis algorithm
Variable transformation to obtain geometric ergodicity in the random-walk Metropolis algorithm
Leif Johnson
C. Geyer
68
51
0
27 Feb 2013
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
185
3,262
0
09 Jun 2012
1