ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1412.3773
  4. Cited By
Distinguishing cause from effect using observational data: methods and
  benchmarks

Distinguishing cause from effect using observational data: methods and benchmarks

11 December 2014
Joris M. Mooij
J. Peters
Dominik Janzing
Jakob Zscheischler
Bernhard Schölkopf
    CML
ArXivPDFHTML

Papers citing "Distinguishing cause from effect using observational data: methods and benchmarks"

8 / 8 papers shown
Title
Unitless Unrestricted Markov-Consistent SCM Generation: Better Benchmark Datasets for Causal Discovery
Unitless Unrestricted Markov-Consistent SCM Generation: Better Benchmark Datasets for Causal Discovery
Rebecca Herman
Jonas Wahl
Urmi Ninad
Jakob Runge
79
1
0
21 Mar 2025
Causality Is Key to Understand and Balance Multiple Goals in Trustworthy ML and Foundation Models
Causality Is Key to Understand and Balance Multiple Goals in Trustworthy ML and Foundation Models
Ruta Binkyte
Ivaxi Sheth
Zhijing Jin
Mohammad Havaei
Bernhard Schölkopf
Mario Fritz
382
1
0
28 Feb 2025
Deriving Causal Order from Single-Variable Interventions: Guarantees & Algorithm
Deriving Causal Order from Single-Variable Interventions: Guarantees & Algorithm
Mathieu Chevalley
Patrick Schwab
Arash Mehrjou
83
1
0
28 May 2024
Integrating Large Language Models in Causal Discovery: A Statistical Causal Approach
Integrating Large Language Models in Causal Discovery: A Statistical Causal Approach
Masayuki Takayama
Tadahisa Okuda
Thong Pham
T. Ikenoue
Shingo Fukuma
Shohei Shimizu
Akiyoshi Sannai
107
18
0
02 Feb 2024
Structural restrictions in local causal discovery: identifying direct causes of a target variable
Structural restrictions in local causal discovery: identifying direct causes of a target variable
Juraj Bodik
V. Chavez-Demoulin
CML
52
1
0
29 Jul 2023
Causal Discovery with Continuous Additive Noise Models
Causal Discovery with Continuous Additive Noise Models
Jonas Peters
Joris Mooij
Dominik Janzing
Bernhard Schölkopf
CML
84
563
0
26 Sep 2013
On Causal and Anticausal Learning
On Causal and Anticausal Learning
Bernhard Schölkopf
Dominik Janzing
J. Peters
Eleni Sgouritsa
Kun Zhang
Joris Mooij
CML
74
604
0
27 Jun 2012
Hilbert space embeddings and metrics on probability measures
Hilbert space embeddings and metrics on probability measures
Bharath K. Sriperumbudur
Arthur Gretton
Kenji Fukumizu
Bernhard Schölkopf
Gert R. G. Lanckriet
154
741
0
30 Jul 2009
1