Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1412.3773
Cited By
Distinguishing cause from effect using observational data: methods and benchmarks
11 December 2014
Joris M. Mooij
J. Peters
Dominik Janzing
Jakob Zscheischler
Bernhard Schölkopf
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Distinguishing cause from effect using observational data: methods and benchmarks"
8 / 8 papers shown
Title
Unitless Unrestricted Markov-Consistent SCM Generation: Better Benchmark Datasets for Causal Discovery
Rebecca Herman
Jonas Wahl
Urmi Ninad
Jakob Runge
79
1
0
21 Mar 2025
Causality Is Key to Understand and Balance Multiple Goals in Trustworthy ML and Foundation Models
Ruta Binkyte
Ivaxi Sheth
Zhijing Jin
Mohammad Havaei
Bernhard Schölkopf
Mario Fritz
382
1
0
28 Feb 2025
Deriving Causal Order from Single-Variable Interventions: Guarantees & Algorithm
Mathieu Chevalley
Patrick Schwab
Arash Mehrjou
83
1
0
28 May 2024
Integrating Large Language Models in Causal Discovery: A Statistical Causal Approach
Masayuki Takayama
Tadahisa Okuda
Thong Pham
T. Ikenoue
Shingo Fukuma
Shohei Shimizu
Akiyoshi Sannai
107
18
0
02 Feb 2024
Structural restrictions in local causal discovery: identifying direct causes of a target variable
Juraj Bodik
V. Chavez-Demoulin
CML
52
1
0
29 Jul 2023
Causal Discovery with Continuous Additive Noise Models
Jonas Peters
Joris Mooij
Dominik Janzing
Bernhard Schölkopf
CML
84
563
0
26 Sep 2013
On Causal and Anticausal Learning
Bernhard Schölkopf
Dominik Janzing
J. Peters
Eleni Sgouritsa
Kun Zhang
Joris Mooij
CML
74
604
0
27 Jun 2012
Hilbert space embeddings and metrics on probability measures
Bharath K. Sriperumbudur
Arthur Gretton
Kenji Fukumizu
Bernhard Schölkopf
Gert R. G. Lanckriet
154
741
0
30 Jul 2009
1