ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1411.4077
  4. Cited By
A framework for studying synaptic plasticity with neural spike train
  data

A framework for studying synaptic plasticity with neural spike train data

14 November 2014
Scott W. Linderman
Christopher H. Stock
Ryan P. Adams
ArXivPDFHTML

Papers citing "A framework for studying synaptic plasticity with neural spike train data"

4 / 4 papers shown
Title
Cox-Hawkes: doubly stochastic spatiotemporal Poisson processes
Cox-Hawkes: doubly stochastic spatiotemporal Poisson processes
Xenia Miscouridou
Samir Bhatt
G. Mohler
Seth Flaxman
Swapnil Mishra
19
4
0
21 Oct 2022
Parameter elimination in particle Gibbs sampling
Parameter elimination in particle Gibbs sampling
A. Wigren
Riccardo Sven Risuleo
Lawrence M. Murray
Fredrik Lindsten
16
15
0
30 Oct 2019
Learning dynamical systems with particle stochastic approximation EM
Learning dynamical systems with particle stochastic approximation EM
Andreas Svensson
Fredrik Lindsten
23
9
0
25 Jun 2018
Ancestor Sampling for Particle Gibbs
Ancestor Sampling for Particle Gibbs
Fredrik Lindsten
Michael I. Jordan
Thomas B. Schon
54
61
0
25 Oct 2012
1