ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1411.3803
  4. Cited By
Stochastic Compositional Gradient Descent: Algorithms for Minimizing
  Compositions of Expected-Value Functions

Stochastic Compositional Gradient Descent: Algorithms for Minimizing Compositions of Expected-Value Functions

14 November 2014
Mengdi Wang
Ethan X. Fang
Han Liu
ArXiv (abs)PDFHTML

Papers citing "Stochastic Compositional Gradient Descent: Algorithms for Minimizing Compositions of Expected-Value Functions"

10 / 10 papers shown
Title
Nonconvex Stochastic Bregman Proximal Gradient Method with Application to Deep Learning
Nonconvex Stochastic Bregman Proximal Gradient Method with Application to Deep Learning
Kuan-Fu Ding
Jingyang Li
Kim-Chuan Toh
101
8
0
26 Jun 2023
Stochastic Compositional Optimization with Compositional Constraints
Stochastic Compositional Optimization with Compositional Constraints
Shuoguang Yang
Wei You
Zhe Zhang
Ethan X. Fang
70
3
0
09 Sep 2022
Sinkhorn Distributionally Robust Optimization
Sinkhorn Distributionally Robust Optimization
Jie Wang
Rui Gao
Yao Xie
127
39
0
24 Sep 2021
Statistical Estimation of Composite Risk Functionals and Risk
  Optimization Problems
Statistical Estimation of Composite Risk Functionals and Risk Optimization Problems
Darinka Dentcheva
S. Penev
A. Ruszczynski
56
71
0
10 Apr 2015
Stochastic Gradient Descent for Non-smooth Optimization: Convergence
  Results and Optimal Averaging Schemes
Stochastic Gradient Descent for Non-smooth Optimization: Convergence Results and Optimal Averaging Schemes
Ohad Shamir
Tong Zhang
162
576
0
08 Dec 2012
Making Gradient Descent Optimal for Strongly Convex Stochastic
  Optimization
Making Gradient Descent Optimal for Strongly Convex Stochastic Optimization
Alexander Rakhlin
Ohad Shamir
Karthik Sridharan
182
769
0
26 Sep 2011
Variable selection in nonparametric additive models
Variable selection in nonparametric additive models
Jian Huang
J. Horowitz
Fengrong Wei
270
549
0
20 Oct 2010
Information-theoretic lower bounds on the oracle complexity of
  stochastic convex optimization
Information-theoretic lower bounds on the oracle complexity of stochastic convex optimization
Alekh Agarwal
Peter L. Bartlett
Pradeep Ravikumar
Martin J. Wainwright
212
251
0
03 Sep 2010
High-dimensional analysis of semidefinite relaxations for sparse
  principal components
High-dimensional analysis of semidefinite relaxations for sparse principal components
Arash A. Amini
Martin J. Wainwright
176
314
0
27 Mar 2008
Sparse Additive Models
Sparse Additive Models
Pradeep Ravikumar
John D. Lafferty
Han Liu
Larry A. Wasserman
506
573
0
28 Nov 2007
1