ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1411.2066
  4. Cited By
Learning Theory for Distribution Regression

Learning Theory for Distribution Regression

8 November 2014
Z. Szabó
Bharath K. Sriperumbudur
Barnabás Póczós
Arthur Gretton
    OOD
ArXivPDFHTML

Papers citing "Learning Theory for Distribution Regression"

19 / 19 papers shown
Title
Improved learning theory for kernel distribution regression with two-stage sampling
Improved learning theory for kernel distribution regression with two-stage sampling
F. Bachoc
Louis Bethune
Alberto González Sanz
Jean-Michel Loubes
96
1
0
28 Jan 2025
Demystifying amortized causal discovery with transformers
Demystifying amortized causal discovery with transformers
Francesco Montagna
Max Cairney-Leeming
Dhanya Sridhar
Francesco Locatello
CML
57
1
0
27 May 2024
Asymptotic analysis for covariance parameter estimation of Gaussian
  processes with functional inputs
Asymptotic analysis for covariance parameter estimation of Gaussian processes with functional inputs
Lucas Reding
A. F. López-Lopera
F. Bachoc
44
1
0
26 Apr 2024
Domain Generalization by Functional Regression
Domain Generalization by Functional Regression
Markus Holzleitner
S. Pereverzyev
Werner Zellinger
OOD
21
4
0
09 Feb 2023
Statistical Optimality of Divide and Conquer Kernel-based Functional
  Linear Regression
Statistical Optimality of Divide and Conquer Kernel-based Functional Linear Regression
Jiading Liu
Lei Shi
30
9
0
20 Nov 2022
Learning linear operators: Infinite-dimensional regression as a
  well-behaved non-compact inverse problem
Learning linear operators: Infinite-dimensional regression as a well-behaved non-compact inverse problem
Mattes Mollenhauer
Nicole Mücke
T. Sullivan
30
25
0
16 Nov 2022
Gaussian Processes on Distributions based on Regularized Optimal
  Transport
Gaussian Processes on Distributions based on Regularized Optimal Transport
F. Bachoc
Louis Bethune
Alberto González Sanz
Jean-Michel Loubes
GP
OT
34
7
0
12 Oct 2022
Generalized Identifiability Bounds for Mixture Models with Grouped
  Samples
Generalized Identifiability Bounds for Mixture Models with Grouped Samples
Robert A. Vandermeulen
René Saitenmacher
28
2
0
22 Jul 2022
Nonlinear Distribution Regression for Remote Sensing Applications
Nonlinear Distribution Regression for Remote Sensing Applications
J. Adsuara
Adrián Pérez-Suay
Jordi Munoz-Marí
Anna Mateo-Sanchis
M. Piles
Gustau Camps-Valls
21
17
0
07 Dec 2020
Anomaly Detection at Scale: The Case for Deep Distributional Time Series
  Models
Anomaly Detection at Scale: The Case for Deep Distributional Time Series Models
Fadhel Ayed
Lorenzo Stella
Tim Januschowski
Jan Gasthaus
AI4TS
40
10
0
30 Jul 2020
Amortised Learning by Wake-Sleep
Amortised Learning by Wake-Sleep
W. Li
Theodore H. Moskovitz
Heishiro Kanagawa
M. Sahani
OOD
23
7
0
22 Feb 2020
A Measure-Theoretic Approach to Kernel Conditional Mean Embeddings
A Measure-Theoretic Approach to Kernel Conditional Mean Embeddings
Junhyung Park
Krikamol Muandet
35
77
0
10 Feb 2020
Kernel Instrumental Variable Regression
Kernel Instrumental Variable Regression
Rahul Singh
M. Sahani
Arthur Gretton
33
168
0
01 Jun 2019
BRUNO: A Deep Recurrent Model for Exchangeable Data
BRUNO: A Deep Recurrent Model for Exchangeable Data
I. Korshunova
Jonas Degrave
Ferenc Huszár
Y. Gal
Arthur Gretton
J. Dambre
BDL
24
33
0
21 Feb 2018
MONK -- Outlier-Robust Mean Embedding Estimation by Median-of-Means
MONK -- Outlier-Robust Mean Embedding Estimation by Median-of-Means
M. Lerasle
Z. Szabó
Gaspar Massiot
Guillaume Lecué
34
34
0
13 Feb 2018
Kernel method for persistence diagrams via kernel embedding and weight
  factor
Kernel method for persistence diagrams via kernel embedding and weight factor
G. Kusano
Kenji Fukumizu
Y. Hiraoka
17
83
0
12 Jun 2017
Deep Sets
Deep Sets
Manzil Zaheer
Satwik Kottur
Siamak Ravanbakhsh
Barnabás Póczós
Ruslan Salakhutdinov
Alex Smola
95
2,422
0
10 Mar 2017
Kernel regression, minimax rates and effective dimensionality: beyond
  the regular case
Kernel regression, minimax rates and effective dimensionality: beyond the regular case
Gilles Blanchard
Nicole Mücke
13
9
0
12 Nov 2016
Kernel-Based Just-In-Time Learning for Passing Expectation Propagation
  Messages
Kernel-Based Just-In-Time Learning for Passing Expectation Propagation Messages
Wittawat Jitkrittum
Arthur Gretton
N. Heess
S. M. Ali Eslami
Balaji Lakshminarayanan
Dino Sejdinovic
Z. Szabó
35
33
0
09 Mar 2015
1