Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1411.2066
Cited By
Learning Theory for Distribution Regression
8 November 2014
Z. Szabó
Bharath K. Sriperumbudur
Barnabás Póczós
Arthur Gretton
OOD
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning Theory for Distribution Regression"
19 / 19 papers shown
Title
Improved learning theory for kernel distribution regression with two-stage sampling
F. Bachoc
Louis Bethune
Alberto González Sanz
Jean-Michel Loubes
96
1
0
28 Jan 2025
Demystifying amortized causal discovery with transformers
Francesco Montagna
Max Cairney-Leeming
Dhanya Sridhar
Francesco Locatello
CML
57
1
0
27 May 2024
Asymptotic analysis for covariance parameter estimation of Gaussian processes with functional inputs
Lucas Reding
A. F. López-Lopera
F. Bachoc
44
1
0
26 Apr 2024
Domain Generalization by Functional Regression
Markus Holzleitner
S. Pereverzyev
Werner Zellinger
OOD
21
4
0
09 Feb 2023
Statistical Optimality of Divide and Conquer Kernel-based Functional Linear Regression
Jiading Liu
Lei Shi
30
9
0
20 Nov 2022
Learning linear operators: Infinite-dimensional regression as a well-behaved non-compact inverse problem
Mattes Mollenhauer
Nicole Mücke
T. Sullivan
30
25
0
16 Nov 2022
Gaussian Processes on Distributions based on Regularized Optimal Transport
F. Bachoc
Louis Bethune
Alberto González Sanz
Jean-Michel Loubes
GP
OT
34
7
0
12 Oct 2022
Generalized Identifiability Bounds for Mixture Models with Grouped Samples
Robert A. Vandermeulen
René Saitenmacher
28
2
0
22 Jul 2022
Nonlinear Distribution Regression for Remote Sensing Applications
J. Adsuara
Adrián Pérez-Suay
Jordi Munoz-Marí
Anna Mateo-Sanchis
M. Piles
Gustau Camps-Valls
21
17
0
07 Dec 2020
Anomaly Detection at Scale: The Case for Deep Distributional Time Series Models
Fadhel Ayed
Lorenzo Stella
Tim Januschowski
Jan Gasthaus
AI4TS
40
10
0
30 Jul 2020
Amortised Learning by Wake-Sleep
W. Li
Theodore H. Moskovitz
Heishiro Kanagawa
M. Sahani
OOD
23
7
0
22 Feb 2020
A Measure-Theoretic Approach to Kernel Conditional Mean Embeddings
Junhyung Park
Krikamol Muandet
35
77
0
10 Feb 2020
Kernel Instrumental Variable Regression
Rahul Singh
M. Sahani
Arthur Gretton
33
168
0
01 Jun 2019
BRUNO: A Deep Recurrent Model for Exchangeable Data
I. Korshunova
Jonas Degrave
Ferenc Huszár
Y. Gal
Arthur Gretton
J. Dambre
BDL
24
33
0
21 Feb 2018
MONK -- Outlier-Robust Mean Embedding Estimation by Median-of-Means
M. Lerasle
Z. Szabó
Gaspar Massiot
Guillaume Lecué
34
34
0
13 Feb 2018
Kernel method for persistence diagrams via kernel embedding and weight factor
G. Kusano
Kenji Fukumizu
Y. Hiraoka
17
83
0
12 Jun 2017
Deep Sets
Manzil Zaheer
Satwik Kottur
Siamak Ravanbakhsh
Barnabás Póczós
Ruslan Salakhutdinov
Alex Smola
95
2,422
0
10 Mar 2017
Kernel regression, minimax rates and effective dimensionality: beyond the regular case
Gilles Blanchard
Nicole Mücke
13
9
0
12 Nov 2016
Kernel-Based Just-In-Time Learning for Passing Expectation Propagation Messages
Wittawat Jitkrittum
Arthur Gretton
N. Heess
S. M. Ali Eslami
Balaji Lakshminarayanan
Dino Sejdinovic
Z. Szabó
35
33
0
09 Mar 2015
1