ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1411.1091
  4. Cited By
Do Convnets Learn Correspondence?

Do Convnets Learn Correspondence?

4 November 2014
Jonathan Long
Ning Zhang
Trevor Darrell
ArXivPDFHTML

Papers citing "Do Convnets Learn Correspondence?"

10 / 60 papers shown
Title
Proposal Flow
Proposal Flow
Bumsub Ham
Minsu Cho
Cordelia Schmid
Jean Ponce
21
139
0
16 Nov 2015
Aggregating Deep Convolutional Features for Image Retrieval
Aggregating Deep Convolutional Features for Image Retrieval
Artem Babenko
Victor Lempitsky
FAtt
31
690
0
26 Oct 2015
Exploiting Local Features from Deep Networks for Image Retrieval
Exploiting Local Features from Deep Networks for Image Retrieval
Joe Yue-Hei Ng
Fan Yang
L. Davis
FAtt
41
412
0
20 Apr 2015
Matching-CNN Meets KNN: Quasi-Parametric Human Parsing
Matching-CNN Meets KNN: Quasi-Parametric Human Parsing
Si Liu
Xiaodan Liang
Luoqi Liu
Xiaohui Shen
Jianchao Yang
Changsheng Xu
Liang Lin
Xiaochun Cao
Shuicheng Yan
3DH
60
168
0
06 Apr 2015
Object Detectors Emerge in Deep Scene CNNs
Object Detectors Emerge in Deep Scene CNNs
Bolei Zhou
A. Khosla
Àgata Lapedriza
A. Oliva
Antonio Torralba
ObjD
21
1,278
0
22 Dec 2014
Generative Modeling of Convolutional Neural Networks
Generative Modeling of Convolutional Neural Networks
Jifeng Dai
Ying Nian Wu
Ying-Nian Wu
25
74
0
19 Dec 2014
Persistent Evidence of Local Image Properties in Generic ConvNets
Persistent Evidence of Local Image Properties in Generic ConvNets
A. Razavian
Hossein Azizpour
A. Maki
Josephine Sullivan
Carl Henrik Ek
S. Carlsson
SSL
37
6
0
24 Nov 2014
Viewpoints and Keypoints
Viewpoints and Keypoints
Shubham Tulsiani
Jitendra Malik
40
398
0
22 Nov 2014
Do More Dropouts in Pool5 Feature Maps for Better Object Detection
Do More Dropouts in Pool5 Feature Maps for Better Object Detection
Zhiqiang Shen
Xiangyang Xue
32
5
0
24 Sep 2014
Deformable Part Models are Convolutional Neural Networks
Deformable Part Models are Convolutional Neural Networks
Ross B. Girshick
F. Iandola
Trevor Darrell
Jitendra Malik
44
455
0
18 Sep 2014
Previous
12