ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1411.0086
29
110

High-order Composite Likelihood Inference for Max-Stable Distributions and Processes

1 November 2014
S. Castruccio
Raphael Huser
M. Genton
    TPM
ArXivPDFHTML
Abstract

In multivariate or spatial extremes, inference for max-stable processes observed at a large collection of locations is among the most challenging problems in computational statistics, and current approaches typically rely on less expensive composite likelihoods constructed from small subsets of data. In this work, we explore the limits of modern state-of-the-art computational facilities to perform full likelihood inference and to efficiently evaluate high-order composite likelihoods. With extensive simulations, we assess the loss of information of composite likelihood estimators with respect to a full likelihood approach for some widely-used multivariate or spatial extreme models, we discuss how to choose composite likelihood truncation to improve the efficiency, and we also provide recommendations for practitioners.

View on arXiv
Comments on this paper