ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1410.0247
  4. Cited By
A Practical Scheme and Fast Algorithm to Tune the Lasso With Optimality
  Guarantees

A Practical Scheme and Fast Algorithm to Tune the Lasso With Optimality Guarantees

1 October 2014
M. Chichignoud
Johannes Lederer
Martin J. Wainwright
ArXivPDFHTML

Papers citing "A Practical Scheme and Fast Algorithm to Tune the Lasso With Optimality Guarantees"

3 / 3 papers shown
Title
Tuning parameter calibration for $\ell_1$-regularized logistic
  regression
Tuning parameter calibration for ℓ1\ell_1ℓ1​-regularized logistic regression
Wei Li
Johannes Lederer
29
13
0
01 Oct 2016
Oracle Inequalities for High-dimensional Prediction
Oracle Inequalities for High-dimensional Prediction
Johannes Lederer
Lu Yu
Irina Gaynanova
31
24
0
01 Aug 2016
Optimal Two-Step Prediction in Regression
Optimal Two-Step Prediction in Regression
Didier Chételat
Johannes Lederer
Joseph Salmon
40
19
0
18 Oct 2014
1