ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1409.1458
  4. Cited By
Communication-Efficient Distributed Dual Coordinate Ascent

Communication-Efficient Distributed Dual Coordinate Ascent

4 September 2014
Martin Jaggi
Virginia Smith
Martin Takáč
Jonathan Terhorst
S. Krishnan
Thomas Hofmann
Michael I. Jordan
ArXivPDFHTML

Papers citing "Communication-Efficient Distributed Dual Coordinate Ascent"

50 / 52 papers shown
Title
Heterogeneous Federated Learning: State-of-the-art and Research
  Challenges
Heterogeneous Federated Learning: State-of-the-art and Research Challenges
Mang Ye
Xiuwen Fang
Bo Du
PongChi Yuen
Dacheng Tao
FedML
AAML
39
244
0
20 Jul 2023
On the Optimal Batch Size for Byzantine-Robust Distributed Learning
On the Optimal Batch Size for Byzantine-Robust Distributed Learning
Yi-Rui Yang
Chang-Wei Shi
Wu-Jun Li
FedML
AAML
19
0
0
23 May 2023
Sharper Analysis for Minibatch Stochastic Proximal Point Methods:
  Stability, Smoothness, and Deviation
Sharper Analysis for Minibatch Stochastic Proximal Point Methods: Stability, Smoothness, and Deviation
Xiao-Tong Yuan
P. Li
34
2
0
09 Jan 2023
Continual Learning with Distributed Optimization: Does CoCoA Forget?
Continual Learning with Distributed Optimization: Does CoCoA Forget?
Martin Hellkvist
Ayça Özçelikkale
Anders Ahlén
CLL
OOD
16
1
0
30 Nov 2022
Efficient Convex Optimization Requires Superlinear Memory
Efficient Convex Optimization Requires Superlinear Memory
A. Marsden
Vatsal Sharan
Aaron Sidford
Gregory Valiant
29
14
0
29 Mar 2022
SpreadGNN: Serverless Multi-task Federated Learning for Graph Neural
  Networks
SpreadGNN: Serverless Multi-task Federated Learning for Graph Neural Networks
Chaoyang He
Emir Ceyani
Keshav Balasubramanian
M. Annavaram
Salman Avestimehr
FedML
25
50
0
04 Jun 2021
Distributed Learning of Finite Gaussian Mixtures
Distributed Learning of Finite Gaussian Mixtures
Qiong Zhang
Jiahua Chen
47
8
0
20 Oct 2020
A Survey on Large-scale Machine Learning
A Survey on Large-scale Machine Learning
Meng Wang
Weijie Fu
Xiangnan He
Shijie Hao
Xindong Wu
14
109
0
10 Aug 2020
Communication-Efficient Distributed Stochastic AUC Maximization with
  Deep Neural Networks
Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks
Zhishuai Guo
Mingrui Liu
Zhuoning Yuan
Li Shen
Wei Liu
Tianbao Yang
33
42
0
05 May 2020
High Bandwidth Memory on FPGAs: A Data Analytics Perspective
High Bandwidth Memory on FPGAs: A Data Analytics Perspective
Kaan Kara
C. Hagleitner
D. Diamantopoulos
D. Syrivelis
Gustavo Alonso
16
31
0
02 Apr 2020
Buffered Asynchronous SGD for Byzantine Learning
Buffered Asynchronous SGD for Byzantine Learning
Yi-Rui Yang
Wu-Jun Li
FedML
29
5
0
02 Mar 2020
Communication-Efficient Edge AI: Algorithms and Systems
Communication-Efficient Edge AI: Algorithms and Systems
Yuanming Shi
Kai Yang
Tao Jiang
Jun Zhang
Khaled B. Letaief
GNN
17
326
0
22 Feb 2020
Dynamic Federated Learning
Dynamic Federated Learning
Elsa Rizk
Stefan Vlaski
Ali H. Sayed
FedML
16
25
0
20 Feb 2020
COKE: Communication-Censored Decentralized Kernel Learning
COKE: Communication-Censored Decentralized Kernel Learning
Ping Xu
Yue Wang
Xiang Chen
Z. Tian
15
20
0
28 Jan 2020
Q-GADMM: Quantized Group ADMM for Communication Efficient Decentralized
  Machine Learning
Q-GADMM: Quantized Group ADMM for Communication Efficient Decentralized Machine Learning
Anis Elgabli
Jihong Park
Amrit Singh Bedi
Chaouki Ben Issaid
M. Bennis
Vaneet Aggarwal
24
67
0
23 Oct 2019
Robust Distributed Accelerated Stochastic Gradient Methods for
  Multi-Agent Networks
Robust Distributed Accelerated Stochastic Gradient Methods for Multi-Agent Networks
Alireza Fallah
Mert Gurbuzbalaban
Asuman Ozdaglar
Umut Simsekli
Lingjiong Zhu
24
28
0
19 Oct 2019
The Non-IID Data Quagmire of Decentralized Machine Learning
The Non-IID Data Quagmire of Decentralized Machine Learning
Kevin Hsieh
Amar Phanishayee
O. Mutlu
Phillip B. Gibbons
6
558
0
01 Oct 2019
Variational Federated Multi-Task Learning
Variational Federated Multi-Task Learning
Luca Corinzia
Ami Beuret
J. M. Buhmann
FedML
24
159
0
14 Jun 2019
Communication-Efficient Accurate Statistical Estimation
Communication-Efficient Accurate Statistical Estimation
Jianqing Fan
Yongyi Guo
Kaizheng Wang
16
110
0
12 Jun 2019
LAGC: Lazily Aggregated Gradient Coding for Straggler-Tolerant and
  Communication-Efficient Distributed Learning
LAGC: Lazily Aggregated Gradient Coding for Straggler-Tolerant and Communication-Efficient Distributed Learning
Jingjing Zhang
Osvaldo Simeone
18
31
0
22 May 2019
Collaborative and Privacy-Preserving Machine Teaching via Consensus
  Optimization
Collaborative and Privacy-Preserving Machine Teaching via Consensus Optimization
Yufei Han
Yuzhe Ma
Christopher S. Gates
Kevin A. Roundy
Yun Shen
25
0
0
07 May 2019
A Distributed Second-Order Algorithm You Can Trust
A Distributed Second-Order Algorithm You Can Trust
Celestine Mendler-Dünner
Aurelien Lucchi
Matilde Gargiani
An Bian
Thomas Hofmann
Martin Jaggi
21
32
0
20 Jun 2018
LAG: Lazily Aggregated Gradient for Communication-Efficient Distributed
  Learning
LAG: Lazily Aggregated Gradient for Communication-Efficient Distributed Learning
Tianyi Chen
G. Giannakis
Tao Sun
W. Yin
31
297
0
25 May 2018
SparCML: High-Performance Sparse Communication for Machine Learning
SparCML: High-Performance Sparse Communication for Machine Learning
Cédric Renggli
Saleh Ashkboos
Mehdi Aghagolzadeh
Dan Alistarh
Torsten Hoefler
26
126
0
22 Feb 2018
Gradient Sparsification for Communication-Efficient Distributed
  Optimization
Gradient Sparsification for Communication-Efficient Distributed Optimization
Jianqiao Wangni
Jialei Wang
Ji Liu
Tong Zhang
15
522
0
26 Oct 2017
GIANT: Globally Improved Approximate Newton Method for Distributed
  Optimization
GIANT: Globally Improved Approximate Newton Method for Distributed Optimization
Shusen Wang
Farbod Roosta-Khorasani
Peng Xu
Michael W. Mahoney
28
127
0
11 Sep 2017
Federated Multi-Task Learning
Federated Multi-Task Learning
Virginia Smith
Chao-Kai Chiang
Maziar Sanjabi
Ameet Talwalkar
FedML
15
1,776
0
30 May 2017
Distributed Dual Coordinate Ascent in General Tree Networks and
  Communication Network Effect on Synchronous Machine Learning
Distributed Dual Coordinate Ascent in General Tree Networks and Communication Network Effect on Synchronous Machine Learning
Myung Cho
Lifeng Lai
Weiyu Xu
12
1
0
14 Mar 2017
Preserving Differential Privacy Between Features in Distributed
  Estimation
Preserving Differential Privacy Between Features in Distributed Estimation
C. Heinze-Deml
Brian McWilliams
N. Meinshausen
16
7
0
01 Mar 2017
Optimization for Large-Scale Machine Learning with Distributed Features
  and Observations
Optimization for Large-Scale Machine Learning with Distributed Features and Observations
A. Nathan
Diego Klabjan
27
13
0
31 Oct 2016
Federated Optimization: Distributed Machine Learning for On-Device
  Intelligence
Federated Optimization: Distributed Machine Learning for On-Device Intelligence
Jakub Konecný
H. B. McMahan
Daniel Ramage
Peter Richtárik
FedML
27
1,876
0
08 Oct 2016
Less than a Single Pass: Stochastically Controlled Stochastic Gradient
  Method
Less than a Single Pass: Stochastically Controlled Stochastic Gradient Method
Lihua Lei
Michael I. Jordan
21
96
0
12 Sep 2016
AIDE: Fast and Communication Efficient Distributed Optimization
AIDE: Fast and Communication Efficient Distributed Optimization
Sashank J. Reddi
Jakub Konecný
Peter Richtárik
Barnabás Póczós
Alex Smola
11
150
0
24 Aug 2016
Level Up Your Strategy: Towards a Descriptive Framework for Meaningful
  Enterprise Gamification
Level Up Your Strategy: Towards a Descriptive Framework for Meaningful Enterprise Gamification
Xinghao Pan
21
62
0
29 May 2016
A General Distributed Dual Coordinate Optimization Framework for
  Regularized Loss Minimization
A General Distributed Dual Coordinate Optimization Framework for Regularized Loss Minimization
Shun Zheng
Jialei Wang
Fen Xia
Wenyuan Xu
Tong Zhang
13
22
0
13 Apr 2016
Towards Geo-Distributed Machine Learning
Towards Geo-Distributed Machine Learning
Ignacio Cano
Markus Weimer
D. Mahajan
Carlo Curino
Giovanni Matteo Fumarola
9
56
0
30 Mar 2016
SCOPE: Scalable Composite Optimization for Learning on Spark
SCOPE: Scalable Composite Optimization for Learning on Spark
Shen-Yi Zhao
Ru Xiang
Yinghuan Shi
Peng Gao
Wu-Jun Li
16
16
0
30 Jan 2016
Strategies and Principles of Distributed Machine Learning on Big Data
Strategies and Principles of Distributed Machine Learning on Big Data
Eric P. Xing
Qirong Ho
P. Xie
Wei-Ming Dai
AI4CE
24
153
0
31 Dec 2015
L1-Regularized Distributed Optimization: A Communication-Efficient
  Primal-Dual Framework
L1-Regularized Distributed Optimization: A Communication-Efficient Primal-Dual Framework
Virginia Smith
Simone Forte
Michael I. Jordan
Martin Jaggi
23
28
0
13 Dec 2015
A Distributed One-Step Estimator
A Distributed One-Step Estimator
Cheng Huang
X. Huo
FedML
13
80
0
04 Nov 2015
Splash: User-friendly Programming Interface for Parallelizing Stochastic
  Algorithms
Splash: User-friendly Programming Interface for Parallelizing Stochastic Algorithms
Yuchen Zhang
Michael I. Jordan
23
20
0
24 Jun 2015
Communication Efficient Distributed Agnostic Boosting
Communication Efficient Distributed Agnostic Boosting
Shang-Tse Chen
Maria-Florina Balcan
Duen Horng Chau
FedML
21
24
0
21 Jun 2015
Distributed Training of Structured SVM
Distributed Training of Structured SVM
Ching-pei Lee
Kai-Wei Chang
Shyam Upadhyay
Dan Roth
15
8
0
08 Jun 2015
DUAL-LOCO: Distributing Statistical Estimation Using Random Projections
DUAL-LOCO: Distributing Statistical Estimation Using Random Projections
C. Heinze
Brian McWilliams
N. Meinshausen
26
37
0
08 Jun 2015
Communication Complexity of Distributed Convex Learning and Optimization
Communication Complexity of Distributed Convex Learning and Optimization
Yossi Arjevani
Ohad Shamir
31
207
0
05 Jun 2015
Optimizing Non-decomposable Performance Measures: A Tale of Two Classes
Optimizing Non-decomposable Performance Measures: A Tale of Two Classes
Harikrishna Narasimhan
Purushottam Kar
Prateek Jain
16
45
0
26 May 2015
Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting
Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting
Jakub Konecný
Jie Liu
Peter Richtárik
Martin Takáč
ODL
25
273
0
16 Apr 2015
Stochastic Dual Coordinate Ascent with Adaptive Probabilities
Stochastic Dual Coordinate Ascent with Adaptive Probabilities
Dominik Csiba
Zheng Qu
Peter Richtárik
ODL
55
97
0
27 Feb 2015
Adding vs. Averaging in Distributed Primal-Dual Optimization
Adding vs. Averaging in Distributed Primal-Dual Optimization
Chenxin Ma
Virginia Smith
Martin Jaggi
Michael I. Jordan
Peter Richtárik
Martin Takáč
FedML
21
176
0
12 Feb 2015
Randomized Dual Coordinate Ascent with Arbitrary Sampling
Randomized Dual Coordinate Ascent with Arbitrary Sampling
Zheng Qu
Peter Richtárik
Tong Zhang
32
58
0
21 Nov 2014
12
Next