Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1409.1458
Cited By
Communication-Efficient Distributed Dual Coordinate Ascent
4 September 2014
Martin Jaggi
Virginia Smith
Martin Takáč
Jonathan Terhorst
S. Krishnan
Thomas Hofmann
Michael I. Jordan
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Communication-Efficient Distributed Dual Coordinate Ascent"
50 / 52 papers shown
Title
Heterogeneous Federated Learning: State-of-the-art and Research Challenges
Mang Ye
Xiuwen Fang
Bo Du
PongChi Yuen
Dacheng Tao
FedML
AAML
39
244
0
20 Jul 2023
On the Optimal Batch Size for Byzantine-Robust Distributed Learning
Yi-Rui Yang
Chang-Wei Shi
Wu-Jun Li
FedML
AAML
19
0
0
23 May 2023
Sharper Analysis for Minibatch Stochastic Proximal Point Methods: Stability, Smoothness, and Deviation
Xiao-Tong Yuan
P. Li
34
2
0
09 Jan 2023
Continual Learning with Distributed Optimization: Does CoCoA Forget?
Martin Hellkvist
Ayça Özçelikkale
Anders Ahlén
CLL
OOD
16
1
0
30 Nov 2022
Efficient Convex Optimization Requires Superlinear Memory
A. Marsden
Vatsal Sharan
Aaron Sidford
Gregory Valiant
29
14
0
29 Mar 2022
SpreadGNN: Serverless Multi-task Federated Learning for Graph Neural Networks
Chaoyang He
Emir Ceyani
Keshav Balasubramanian
M. Annavaram
Salman Avestimehr
FedML
25
50
0
04 Jun 2021
Distributed Learning of Finite Gaussian Mixtures
Qiong Zhang
Jiahua Chen
47
8
0
20 Oct 2020
A Survey on Large-scale Machine Learning
Meng Wang
Weijie Fu
Xiangnan He
Shijie Hao
Xindong Wu
14
109
0
10 Aug 2020
Communication-Efficient Distributed Stochastic AUC Maximization with Deep Neural Networks
Zhishuai Guo
Mingrui Liu
Zhuoning Yuan
Li Shen
Wei Liu
Tianbao Yang
33
42
0
05 May 2020
High Bandwidth Memory on FPGAs: A Data Analytics Perspective
Kaan Kara
C. Hagleitner
D. Diamantopoulos
D. Syrivelis
Gustavo Alonso
16
31
0
02 Apr 2020
Buffered Asynchronous SGD for Byzantine Learning
Yi-Rui Yang
Wu-Jun Li
FedML
29
5
0
02 Mar 2020
Communication-Efficient Edge AI: Algorithms and Systems
Yuanming Shi
Kai Yang
Tao Jiang
Jun Zhang
Khaled B. Letaief
GNN
17
326
0
22 Feb 2020
Dynamic Federated Learning
Elsa Rizk
Stefan Vlaski
Ali H. Sayed
FedML
16
25
0
20 Feb 2020
COKE: Communication-Censored Decentralized Kernel Learning
Ping Xu
Yue Wang
Xiang Chen
Z. Tian
15
20
0
28 Jan 2020
Q-GADMM: Quantized Group ADMM for Communication Efficient Decentralized Machine Learning
Anis Elgabli
Jihong Park
Amrit Singh Bedi
Chaouki Ben Issaid
M. Bennis
Vaneet Aggarwal
24
67
0
23 Oct 2019
Robust Distributed Accelerated Stochastic Gradient Methods for Multi-Agent Networks
Alireza Fallah
Mert Gurbuzbalaban
Asuman Ozdaglar
Umut Simsekli
Lingjiong Zhu
24
28
0
19 Oct 2019
The Non-IID Data Quagmire of Decentralized Machine Learning
Kevin Hsieh
Amar Phanishayee
O. Mutlu
Phillip B. Gibbons
6
558
0
01 Oct 2019
Variational Federated Multi-Task Learning
Luca Corinzia
Ami Beuret
J. M. Buhmann
FedML
24
159
0
14 Jun 2019
Communication-Efficient Accurate Statistical Estimation
Jianqing Fan
Yongyi Guo
Kaizheng Wang
16
110
0
12 Jun 2019
LAGC: Lazily Aggregated Gradient Coding for Straggler-Tolerant and Communication-Efficient Distributed Learning
Jingjing Zhang
Osvaldo Simeone
18
31
0
22 May 2019
Collaborative and Privacy-Preserving Machine Teaching via Consensus Optimization
Yufei Han
Yuzhe Ma
Christopher S. Gates
Kevin A. Roundy
Yun Shen
25
0
0
07 May 2019
A Distributed Second-Order Algorithm You Can Trust
Celestine Mendler-Dünner
Aurelien Lucchi
Matilde Gargiani
An Bian
Thomas Hofmann
Martin Jaggi
21
32
0
20 Jun 2018
LAG: Lazily Aggregated Gradient for Communication-Efficient Distributed Learning
Tianyi Chen
G. Giannakis
Tao Sun
W. Yin
31
297
0
25 May 2018
SparCML: High-Performance Sparse Communication for Machine Learning
Cédric Renggli
Saleh Ashkboos
Mehdi Aghagolzadeh
Dan Alistarh
Torsten Hoefler
26
126
0
22 Feb 2018
Gradient Sparsification for Communication-Efficient Distributed Optimization
Jianqiao Wangni
Jialei Wang
Ji Liu
Tong Zhang
15
522
0
26 Oct 2017
GIANT: Globally Improved Approximate Newton Method for Distributed Optimization
Shusen Wang
Farbod Roosta-Khorasani
Peng Xu
Michael W. Mahoney
28
127
0
11 Sep 2017
Federated Multi-Task Learning
Virginia Smith
Chao-Kai Chiang
Maziar Sanjabi
Ameet Talwalkar
FedML
15
1,776
0
30 May 2017
Distributed Dual Coordinate Ascent in General Tree Networks and Communication Network Effect on Synchronous Machine Learning
Myung Cho
Lifeng Lai
Weiyu Xu
12
1
0
14 Mar 2017
Preserving Differential Privacy Between Features in Distributed Estimation
C. Heinze-Deml
Brian McWilliams
N. Meinshausen
16
7
0
01 Mar 2017
Optimization for Large-Scale Machine Learning with Distributed Features and Observations
A. Nathan
Diego Klabjan
27
13
0
31 Oct 2016
Federated Optimization: Distributed Machine Learning for On-Device Intelligence
Jakub Konecný
H. B. McMahan
Daniel Ramage
Peter Richtárik
FedML
27
1,876
0
08 Oct 2016
Less than a Single Pass: Stochastically Controlled Stochastic Gradient Method
Lihua Lei
Michael I. Jordan
21
96
0
12 Sep 2016
AIDE: Fast and Communication Efficient Distributed Optimization
Sashank J. Reddi
Jakub Konecný
Peter Richtárik
Barnabás Póczós
Alex Smola
11
150
0
24 Aug 2016
Level Up Your Strategy: Towards a Descriptive Framework for Meaningful Enterprise Gamification
Xinghao Pan
21
62
0
29 May 2016
A General Distributed Dual Coordinate Optimization Framework for Regularized Loss Minimization
Shun Zheng
Jialei Wang
Fen Xia
Wenyuan Xu
Tong Zhang
13
22
0
13 Apr 2016
Towards Geo-Distributed Machine Learning
Ignacio Cano
Markus Weimer
D. Mahajan
Carlo Curino
Giovanni Matteo Fumarola
9
56
0
30 Mar 2016
SCOPE: Scalable Composite Optimization for Learning on Spark
Shen-Yi Zhao
Ru Xiang
Yinghuan Shi
Peng Gao
Wu-Jun Li
16
16
0
30 Jan 2016
Strategies and Principles of Distributed Machine Learning on Big Data
Eric P. Xing
Qirong Ho
P. Xie
Wei-Ming Dai
AI4CE
24
153
0
31 Dec 2015
L1-Regularized Distributed Optimization: A Communication-Efficient Primal-Dual Framework
Virginia Smith
Simone Forte
Michael I. Jordan
Martin Jaggi
23
28
0
13 Dec 2015
A Distributed One-Step Estimator
Cheng Huang
X. Huo
FedML
13
80
0
04 Nov 2015
Splash: User-friendly Programming Interface for Parallelizing Stochastic Algorithms
Yuchen Zhang
Michael I. Jordan
23
20
0
24 Jun 2015
Communication Efficient Distributed Agnostic Boosting
Shang-Tse Chen
Maria-Florina Balcan
Duen Horng Chau
FedML
21
24
0
21 Jun 2015
Distributed Training of Structured SVM
Ching-pei Lee
Kai-Wei Chang
Shyam Upadhyay
Dan Roth
15
8
0
08 Jun 2015
DUAL-LOCO: Distributing Statistical Estimation Using Random Projections
C. Heinze
Brian McWilliams
N. Meinshausen
26
37
0
08 Jun 2015
Communication Complexity of Distributed Convex Learning and Optimization
Yossi Arjevani
Ohad Shamir
31
207
0
05 Jun 2015
Optimizing Non-decomposable Performance Measures: A Tale of Two Classes
Harikrishna Narasimhan
Purushottam Kar
Prateek Jain
16
45
0
26 May 2015
Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting
Jakub Konecný
Jie Liu
Peter Richtárik
Martin Takáč
ODL
25
273
0
16 Apr 2015
Stochastic Dual Coordinate Ascent with Adaptive Probabilities
Dominik Csiba
Zheng Qu
Peter Richtárik
ODL
55
97
0
27 Feb 2015
Adding vs. Averaging in Distributed Primal-Dual Optimization
Chenxin Ma
Virginia Smith
Martin Jaggi
Michael I. Jordan
Peter Richtárik
Martin Takáč
FedML
21
176
0
12 Feb 2015
Randomized Dual Coordinate Ascent with Arbitrary Sampling
Zheng Qu
Peter Richtárik
Tong Zhang
32
58
0
21 Nov 2014
1
2
Next