ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1408.6980
  4. Cited By
Augmentation Schemes for Particle MCMC

Augmentation Schemes for Particle MCMC

29 August 2014
Paul Fearnhead
Loukia Meligkotsidou
ArXiv (abs)PDFHTML

Papers citing "Augmentation Schemes for Particle MCMC"

10 / 10 papers shown
Title
A New Approach to Probabilistic Programming Inference
A New Approach to Probabilistic Programming Inference
Frank Wood
Jan-Willem van de Meent
Vikash K. Mansinghka
59
347
0
03 Jul 2015
Particle Metropolis-adjusted Langevin algorithms
Particle Metropolis-adjusted Langevin algorithms
Christopher Nemeth
Chris Sherlock
Paul Fearnhead
65
24
0
23 Dec 2014
Particle Metropolis adjusted Langevin algorithms for state space models
Christopher Nemeth
Paul Fearnhead
63
19
0
04 Feb 2014
Particle Gibbs with Ancestor Sampling
Particle Gibbs with Ancestor Sampling
Fredrik Lindsten
Michael I. Jordan
Thomas B. Schon
115
252
0
03 Jan 2014
Particle Metropolis-Hastings using gradient and Hessian information
Particle Metropolis-Hastings using gradient and Hessian information
J. Dahlin
Fredrik Lindsten
Thomas B. Schon
86
47
0
04 Nov 2013
On the efficiency of pseudo-marginal random walk Metropolis algorithms
On the efficiency of pseudo-marginal random walk Metropolis algorithms
Chris Sherlock
Alexandre Hoang Thiery
Gareth O. Roberts
Jeffrey S. Rosenthal
82
191
0
27 Sep 2013
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
292
3,279
0
09 Jun 2012
On Disturbance State-Space Models and the Particle Marginal
  Metropolis-Hastings Sampler
On Disturbance State-Space Models and the Particle Marginal Metropolis-Hastings Sampler
Lawrence M. Murray
E. Jones
J. Parslow
78
31
0
28 Feb 2012
Particle learning of Gaussian process models for sequential design and
  optimization
Particle learning of Gaussian process models for sequential design and optimization
R. Gramacy
Nicholas G. Polson
94
124
0
29 Sep 2009
The pseudo-marginal approach for efficient Monte Carlo computations
The pseudo-marginal approach for efficient Monte Carlo computations
Christophe Andrieu
Gareth O. Roberts
181
895
0
31 Mar 2009
1