ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1408.3115
  4. Cited By
On Data Preconditioning for Regularized Loss Minimization

On Data Preconditioning for Regularized Loss Minimization

13 August 2014
Tianbao Yang
R. L. Jin
Shenghuo Zhu
Qihang Lin
ArXivPDFHTML

Papers citing "On Data Preconditioning for Regularized Loss Minimization"

5 / 5 papers shown
Title
Matrix Coherence and the Nystrom Method
Matrix Coherence and the Nystrom Method
Ameet Talwalkar
Afshin Rostamizadeh
96
88
0
09 Aug 2014
Scalable Kernel Methods via Doubly Stochastic Gradients
Scalable Kernel Methods via Doubly Stochastic Gradients
Bo Dai
Bo Xie
Niao He
Yingyu Liang
Anant Raj
Maria-Florina Balcan
Le Song
32
227
0
21 Jul 2014
A Proximal Stochastic Gradient Method with Progressive Variance
  Reduction
A Proximal Stochastic Gradient Method with Progressive Variance Reduction
Lin Xiao
Tong Zhang
ODL
84
736
0
19 Mar 2014
Stochastic Gradient Descent for Non-smooth Optimization: Convergence
  Results and Optimal Averaging Schemes
Stochastic Gradient Descent for Non-smooth Optimization: Convergence Results and Optimal Averaging Schemes
Ohad Shamir
Tong Zhang
101
570
0
08 Dec 2012
Sharp analysis of low-rank kernel matrix approximations
Sharp analysis of low-rank kernel matrix approximations
Francis R. Bach
86
277
0
09 Aug 2012
1