ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1407.7722
  4. Cited By
OpenML: networked science in machine learning

OpenML: networked science in machine learning

29 July 2014
Joaquin Vanschoren
Jan N. van Rijn
B. Bischl
Luís Torgo
    FedML
    AI4CE
ArXivPDFHTML

Papers citing "OpenML: networked science in machine learning"

20 / 20 papers shown
Title
Autoencoding Random Forests
Autoencoding Random Forests
Binh Duc Vu
Jan Kapar
Marvin N. Wright
David S. Watson
55
0
0
27 May 2025
OptiMindTune: A Multi-Agent Framework for Intelligent Hyperparameter Optimization
OptiMindTune: A Multi-Agent Framework for Intelligent Hyperparameter Optimization
Meher Bhaskar Madiraju
Meher Sai Preetam Madiraju
52
0
0
25 May 2025
Evolving Machine Learning: A Survey
Ignacio Cabrera Martin
Subhaditya Mukherjee
Almas Baimagambetov
Joaquin Vanschoren
Nikolaos Polatidis
VLM
102
0
0
23 May 2025
CLIMB: Class-imbalanced Learning Benchmark on Tabular Data
Zhining Liu
Zihao Li
Ze Yang
Tianxin Wei
Jian Kang
Yada Zhu
Hendrik Hamann
Jingrui He
Hanghang Tong
LMTD
96
0
0
23 May 2025
Position: AI Competitions Provide the Gold Standard for Empirical Rigor in GenAI Evaluation
Position: AI Competitions Provide the Gold Standard for Empirical Rigor in GenAI Evaluation
D. Sculley
Will Cukierski
Phil Culliton
Sohier Dane
Maggie Demkin
...
Addison Howard
Paul Mooney
Walter Reade
Megan Risdal
Nate Keating
54
1
0
01 May 2025
AutoML Benchmark with shorter time constraints and early stopping
AutoML Benchmark with shorter time constraints and early stopping
Israel Campero Jurado
Pieter Gijsbers
Joaquin Vanschoren
AI4TS
295
0
0
01 Apr 2025
MoRE-LLM: Mixture of Rule Experts Guided by a Large Language Model
MoRE-LLM: Mixture of Rule Experts Guided by a Large Language Model
Alexander Koebler
Ingo Thon
Florian Buettner
49
0
0
26 Mar 2025
EDCA - An Evolutionary Data-Centric AutoML Framework for Efficient Pipelines
EDCA - An Evolutionary Data-Centric AutoML Framework for Efficient Pipelines
Joana Simões
João Correia
367
0
0
06 Mar 2025
A Comprehensive Study of Shapley Value in Data Analytics
A Comprehensive Study of Shapley Value in Data Analytics
Hong Lin
Shixin Wan
Zhongle Xie
Ke Chen
Meihui Zhang
Lidan Shou
Gang Chen
117
0
0
02 Dec 2024
Sequential Large Language Model-Based Hyper-parameter Optimization
Sequential Large Language Model-Based Hyper-parameter Optimization
Kanan Mahammadli
Seyda Ertekin
106
5
0
27 Oct 2024
Efficient Optimization Algorithms for Linear Adversarial Training
Efficient Optimization Algorithms for Linear Adversarial Training
Antônio H. Ribeiro
Thomas B. Schon
Dave Zahariah
Francis Bach
AAML
59
1
0
16 Oct 2024
Targeted synthetic data generation for tabular data via hardness characterization
Targeted synthetic data generation for tabular data via hardness characterization
Tommaso Ferracci
Leonie Goldmann
Anton Hinel
Francesco Sanna Passino
174
0
0
01 Oct 2024
DCA-Bench: A Benchmark for Dataset Curation Agents
DCA-Bench: A Benchmark for Dataset Curation Agents
Benhao Huang
Yingzhuo Yu
Jin Huang
Xingjian Zhang
Jiaqi Ma
48
1
0
11 Jun 2024
T-Explainer: A Model-Agnostic Explainability Framework Based on Gradients
T-Explainer: A Model-Agnostic Explainability Framework Based on Gradients
Evandro S. Ortigossa
Fábio F. Dias
Brian Barr
Claudio T. Silva
L. G. Nonato
FAtt
74
3
0
25 Apr 2024
Assessing the Use of AutoML for Data-Driven Software Engineering
Assessing the Use of AutoML for Data-Driven Software Engineering
Fabio Calefato
L. Quaranta
F. Lanubile
Marcos Kalinowski
45
7
0
20 Jul 2023
A Framework and Benchmark for Deep Batch Active Learning for Regression
A Framework and Benchmark for Deep Batch Active Learning for Regression
David Holzmüller
Viktor Zaverkin
Johannes Kastner
Ingo Steinwart
UQCV
BDL
GP
61
34
0
17 Mar 2022
Adaptation Strategies for Automated Machine Learning on Evolving Data
Adaptation Strategies for Automated Machine Learning on Evolving Data
B. Celik
Joaquin Vanschoren
36
54
0
09 Jun 2020
Large-scale benchmark study of survival prediction methods using
  multi-omics data
Large-scale benchmark study of survival prediction methods using multi-omics data
Moritz Herrmann
Philipp Probst
R. Hornung
V. Jurinovic
A. Boulesteix
34
77
0
07 Mar 2020
Automated versus do-it-yourself methods for causal inference: Lessons
  learned from a data analysis competition
Automated versus do-it-yourself methods for causal inference: Lessons learned from a data analysis competition
Vincent Dorie
J. Hill
Uri Shalit
M. Scott
D. Cervone
CML
94
284
0
09 Jul 2017
To tune or not to tune the number of trees in random forest?
To tune or not to tune the number of trees in random forest?
Philipp Probst
A. Boulesteix
50
388
0
16 May 2017
1