ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1407.3463
  4. Cited By
Optimal low-rank approximations of Bayesian linear inverse problems

Optimal low-rank approximations of Bayesian linear inverse problems

13 July 2014
Alessio Spantini
A. Solonen
Tiangang Cui
James Martin
L. Tenorio
Youssef Marzouk
ArXivPDFHTML

Papers citing "Optimal low-rank approximations of Bayesian linear inverse problems"

3 / 3 papers shown
Title
Dimension-independent likelihood-informed MCMC
Dimension-independent likelihood-informed MCMC
Tiangang Cui
K. Law
Youssef M. Marzouk
37
196
0
13 Nov 2014
Likelihood-informed dimension reduction for nonlinear inverse problems
Likelihood-informed dimension reduction for nonlinear inverse problems
Tiangang Cui
James Martin
Youssef M. Marzouk
A. Solonen
Alessio Spantini
55
158
0
19 Mar 2014
A computational framework for infinite-dimensional Bayesian inverse
  problems. Part I: The linearized case, with application to global seismic
  inversion
A computational framework for infinite-dimensional Bayesian inverse problems. Part I: The linearized case, with application to global seismic inversion
T. Bui-Thanh
Omar Ghattas
James Martin
G. Stadler
49
390
0
06 Aug 2013
1