ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1407.1120
  4. Cited By
From Manifold to Manifold: Geometry-Aware Dimensionality Reduction for
  SPD Matrices

From Manifold to Manifold: Geometry-Aware Dimensionality Reduction for SPD Matrices

4 July 2014
Mehrtash T. Harandi
Mathieu Salzmann
Leonid Sigal
ArXivPDFHTML

Papers citing "From Manifold to Manifold: Geometry-Aware Dimensionality Reduction for SPD Matrices"

3 / 3 papers shown
Title
Kernel Methods on the Riemannian Manifold of Symmetric Positive Definite
  Matrices
Kernel Methods on the Riemannian Manifold of Symmetric Positive Definite Matrices
Sadeep Jayasumana
Leonid Sigal
Mathieu Salzmann
Hongdong Li
Mehrtash Harandi
37
297
0
13 Dec 2014
Sparse Coding and Dictionary Learning for Symmetric Positive Definite
  Matrices: A Kernel Approach
Sparse Coding and Dictionary Learning for Symmetric Positive Definite Matrices: A Kernel Approach
Mehrtash T. Harandi
Conrad Sanderson
Leonid Sigal
Brian C. Lovell
40
205
0
16 Apr 2013
Spatio-Temporal Covariance Descriptors for Action and Gesture
  Recognition
Spatio-Temporal Covariance Descriptors for Action and Gesture Recognition
A. Sanin
Conrad Sanderson
Mehrtash T. Harandi
Brian C. Lovell
55
168
0
25 Mar 2013
1