Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1406.6668
Cited By
Bayesian Numerical Homogenization
25 June 2014
H. Owhadi
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Bayesian Numerical Homogenization"
23 / 23 papers shown
Title
Data-Efficient Kernel Methods for Learning Differential Equations and Their Solution Operators: Algorithms and Error Analysis
Yasamin Jalalian
Juan Felipe Osorio Ramirez
Alexander W. Hsu
Bamdad Hosseini
H. Owhadi
46
0
0
02 Mar 2025
Error Analysis of Kernel/GP Methods for Nonlinear and Parametric PDEs
Pau Batlle
Yifan Chen
Bamdad Hosseini
H. Owhadi
Andrew M. Stuart
34
17
0
08 May 2023
Physics-Guided, Physics-Informed, and Physics-Encoded Neural Networks in Scientific Computing
Salah A. Faroughi
N. Pawar
C. Fernandes
Maziar Raissi
Subasish Das
N. Kalantari
S. K. Mahjour
PINN
AI4CE
27
49
0
14 Nov 2022
Gaussian Process Hydrodynamics
H. Owhadi
24
1
0
21 Sep 2022
Use of BNNM for interference wave solutions of the gBS-like equation and comparison with PINNs
S. Vadyala
S. N. Betgeri
24
0
0
07 Aug 2022
A Deep Learning Approach for Predicting Two-dimensional Soil Consolidation Using Physics-Informed Neural Networks (PINN)
Yue Lu
Gang Mei
F. Piccialli
PINN
AI4CE
19
25
0
09 Apr 2022
Probabilistic learning inference of boundary value problem with uncertainties based on Kullback-Leibler divergence under implicit constraints
Christian Soize
30
5
0
10 Feb 2022
Scientific Machine Learning through Physics-Informed Neural Networks: Where we are and What's next
S. Cuomo
Vincenzo Schiano Di Cola
F. Giampaolo
G. Rozza
Maizar Raissi
F. Piccialli
PINN
26
1,190
0
14 Jan 2022
Stochastic Processes Under Linear Differential Constraints : Application to Gaussian Process Regression for the 3 Dimensional Free Space Wave Equation
Iain Henderson
P. Noble
O. Roustant
21
1
0
23 Nov 2021
Learning Partial Differential Equations in Reproducing Kernel Hilbert Spaces
George Stepaniants
49
15
0
26 Aug 2021
Bayesian Numerical Methods for Nonlinear Partial Differential Equations
Junyang Wang
Jon Cockayne
O. Chkrebtii
T. Sullivan
Chris J. Oates
59
19
0
22 Apr 2021
Data-driven geophysical forecasting: Simple, low-cost, and accurate baselines with kernel methods
B. Hamzi
R. Maulik
H. Owhadi
AI4TS
11
28
0
13 Feb 2021
Data-driven rogue waves and parameter discovery in the defocusing NLS equation with a potential using the PINN deep learning
Li Wang
Zhenya Yan
21
80
0
18 Dec 2020
Symplectic Gaussian Process Regression of Hamiltonian Flow Maps
K. Rath
C. Albert
B. Bischl
U. Toussaint
20
29
0
11 Sep 2020
Weak SINDy For Partial Differential Equations
Daniel Messenger
David M. Bortz
12
169
0
06 Jul 2020
Deep regularization and direct training of the inner layers of Neural Networks with Kernel Flows
G. Yoo
H. Owhadi
24
21
0
19 Feb 2020
Physics Informed Extreme Learning Machine (PIELM) -- A rapid method for the numerical solution of partial differential equations
Vikas Dwivedi
Balaji Srinivasan
PINN
19
190
0
08 Jul 2019
A Modern Retrospective on Probabilistic Numerics
Chris J. Oates
T. Sullivan
AI4CE
18
64
0
14 Jan 2019
Bayesian Probabilistic Numerical Methods
Jon Cockayne
Chris J. Oates
T. Sullivan
Mark Girolami
19
164
0
13 Feb 2017
Probabilistic Numerical Methods for PDE-constrained Bayesian Inverse Problems
Jon Cockayne
Chris J. Oates
T. Sullivan
Mark Girolami
AI4CE
19
79
0
15 Jan 2017
Inferring solutions of differential equations using noisy multi-fidelity data
M. Raissi
P. Perdikaris
George Karniadakis
AI4CE
16
286
0
16 Jul 2016
Gamblets for opening the complexity-bottleneck of implicit schemes for hyperbolic and parabolic ODEs/PDEs with rough coefficients
H. Owhadi
Lei Zhang
AI4CE
21
69
0
24 Jun 2016
Probabilistic Numerical Methods for Partial Differential Equations and Bayesian Inverse Problems
Jon Cockayne
Chris J. Oates
T. Sullivan
Mark Girolami
27
45
0
25 May 2016
1