ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1406.3896
  4. Cited By
Freeze-Thaw Bayesian Optimization

Freeze-Thaw Bayesian Optimization

16 June 2014
Kevin Swersky
Jasper Snoek
Ryan P. Adams
ArXivPDFHTML

Papers citing "Freeze-Thaw Bayesian Optimization"

50 / 54 papers shown
Title
Scaling Gaussian Processes for Learning Curve Prediction via Latent
  Kronecker Structure
Scaling Gaussian Processes for Learning Curve Prediction via Latent Kronecker Structure
Jihao Andreas Lin
Sebastian Ament
Maximilian Balandat
E. Bakshy
BDL
29
2
0
11 Oct 2024
Adaptive Learn-then-Test: Statistically Valid and Efficient Hyperparameter Selection
Adaptive Learn-then-Test: Statistically Valid and Efficient Hyperparameter Selection
Matteo Zecchin
Sangwoo Park
Osvaldo Simeone
LM&MA
77
3
0
24 Sep 2024
A Trajectory-Based Bayesian Approach to Multi-Objective Hyperparameter Optimization with Epoch-Aware Trade-Offs
A Trajectory-Based Bayesian Approach to Multi-Objective Hyperparameter Optimization with Epoch-Aware Trade-Offs
Wenyu Wang
Zheyi Fan
Szu Hui Ng
33
0
0
24 May 2024
In-Context Freeze-Thaw Bayesian Optimization for Hyperparameter
  Optimization
In-Context Freeze-Thaw Bayesian Optimization for Hyperparameter Optimization
Herilalaina Rakotoarison
Steven Adriaensen
Neeratyoy Mallik
Samir Garibov
Eddie Bergman
Frank Hutter
AI4CE
40
9
0
25 Apr 2024
NeuroLGP-SM: Scalable Surrogate-Assisted Neuroevolution for Deep Neural
  Networks
NeuroLGP-SM: Scalable Surrogate-Assisted Neuroevolution for Deep Neural Networks
Fergal Stapleton
Edgar Galván López
48
2
0
12 Apr 2024
Efficient Bayesian Learning Curve Extrapolation using Prior-Data Fitted
  Networks
Efficient Bayesian Learning Curve Extrapolation using Prior-Data Fitted Networks
Steven Adriaensen
Herilalaina Rakotoarison
Samuel G. Müller
Frank Hutter
BDL
31
19
0
31 Oct 2023
Bayesian Optimization-Based Beam Alignment for MmWave MIMO Communication
  Systems
Bayesian Optimization-Based Beam Alignment for MmWave MIMO Communication Systems
Songjie Yang
Baojuan Liu
Zhiqin Hong
Zhong-pei Zhang
12
8
0
28 Jul 2022
Bayesian Optimization Over Iterative Learners with Structured Responses:
  A Budget-aware Planning Approach
Bayesian Optimization Over Iterative Learners with Structured Responses: A Budget-aware Planning Approach
Syrine Belakaria
J. Doppa
Nicolò Fusi
Rishit Sheth
33
7
0
25 Jun 2022
A Probabilistic Machine Learning Approach to Scheduling Parallel Loops
  with Bayesian Optimization
A Probabilistic Machine Learning Approach to Scheduling Parallel Loops with Bayesian Optimization
Kyurae Kim
Youngjae Kim
Sungyong Park
23
12
0
12 Jun 2022
FedHPO-B: A Benchmark Suite for Federated Hyperparameter Optimization
FedHPO-B: A Benchmark Suite for Federated Hyperparameter Optimization
Zhen Wang
Weirui Kuang
Ce Zhang
Bolin Ding
Yaliang Li
FedML
31
13
0
08 Jun 2022
TransBO: Hyperparameter Optimization via Two-Phase Transfer Learning
TransBO: Hyperparameter Optimization via Two-Phase Transfer Learning
Yang Li
Yu Shen
Huaijun Jiang
Wentao Zhang
Zhi-Xin Yang
Ce Zhang
Bin Cui
36
15
0
06 Jun 2022
Amortized Proximal Optimization
Amortized Proximal Optimization
Juhan Bae
Paul Vicol
Jeff Z. HaoChen
Roger C. Grosse
ODL
27
14
0
28 Feb 2022
Learning Curves for Decision Making in Supervised Machine Learning: A Survey
Learning Curves for Decision Making in Supervised Machine Learning: A Survey
F. Mohr
Jan N. van Rijn
41
53
0
28 Jan 2022
Unbiased Gradient Estimation in Unrolled Computation Graphs with
  Persistent Evolution Strategies
Unbiased Gradient Estimation in Unrolled Computation Graphs with Persistent Evolution Strategies
Paul Vicol
Luke Metz
Jascha Narain Sohl-Dickstein
27
67
0
27 Dec 2021
Automated Deep Learning: Neural Architecture Search Is Not the End
Automated Deep Learning: Neural Architecture Search Is Not the End
Xuanyi Dong
D. Kedziora
Katarzyna Musial
Bogdan Gabrys
25
26
0
16 Dec 2021
Scalable One-Pass Optimisation of High-Dimensional Weight-Update
  Hyperparameters by Implicit Differentiation
Scalable One-Pass Optimisation of High-Dimensional Weight-Update Hyperparameters by Implicit Differentiation
Ross M. Clarke
E. T. Oldewage
José Miguel Hernández-Lobato
28
9
0
20 Oct 2021
Non-smooth Bayesian Optimization in Tuning Problems
Non-smooth Bayesian Optimization in Tuning Problems
Hengrui Luo
J. Demmel
Younghyun Cho
Xin Li
Yang Liu
25
13
0
15 Sep 2021
HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems
  for HPO
HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems for HPO
Katharina Eggensperger
Philip Muller
Neeratyoy Mallik
Matthias Feurer
René Sass
Aaron Klein
Noor H. Awad
Marius Lindauer
Frank Hutter
46
100
0
14 Sep 2021
RANK-NOSH: Efficient Predictor-Based Architecture Search via Non-Uniform
  Successive Halving
RANK-NOSH: Efficient Predictor-Based Architecture Search via Non-Uniform Successive Halving
Ruochen Wang
Xiangning Chen
Minhao Cheng
Xiaocheng Tang
Cho-Jui Hsieh
41
13
0
18 Aug 2021
Accelerating Evolutionary Neural Architecture Search via Multi-Fidelity
  Evaluation
Accelerating Evolutionary Neural Architecture Search via Multi-Fidelity Evaluation
Shangshang Yang
Ye Tian
Xiaoshu Xiang
Shichen Peng
Xing-yi Zhang
29
20
0
10 Aug 2021
HyperJump: Accelerating HyperBand via Risk Modelling
HyperJump: Accelerating HyperBand via Risk Modelling
Pedro Mendes
Maria Casimiro
Paolo Romano
David Garlan
22
7
0
05 Aug 2021
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and
  Open Challenges
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges
B. Bischl
Martin Binder
Michel Lang
Tobias Pielok
Jakob Richter
...
Theresa Ullmann
Marc Becker
A. Boulesteix
Difan Deng
Marius Lindauer
85
455
0
13 Jul 2021
Deep Learning for Bayesian Optimization of Scientific Problems with
  High-Dimensional Structure
Deep Learning for Bayesian Optimization of Scientific Problems with High-Dimensional Structure
Samuel Kim
Peter Y. Lu
Charlotte Loh
Jamie Smith
Jasper Snoek
M. Soljavcić
BDL
AI4CE
124
17
0
23 Apr 2021
Amazon SageMaker Automatic Model Tuning: Scalable Gradient-Free
  Optimization
Amazon SageMaker Automatic Model Tuning: Scalable Gradient-Free Optimization
Valerio Perrone
Huibin Shen
Aida Zolic
I. Shcherbatyi
Amr Ahmed
...
Barbara Pogorzelska
Miroslav Miladinovic
K. Kenthapadi
Matthias Seeger
Cédric Archambeau
45
16
0
15 Dec 2020
Delta-STN: Efficient Bilevel Optimization for Neural Networks using
  Structured Response Jacobians
Delta-STN: Efficient Bilevel Optimization for Neural Networks using Structured Response Jacobians
Juhan Bae
Roger C. Grosse
27
24
0
26 Oct 2020
A Novel Training Protocol for Performance Predictors of Evolutionary
  Neural Architecture Search Algorithms
A Novel Training Protocol for Performance Predictors of Evolutionary Neural Architecture Search Algorithms
Yizhou Sun
Xian Sun
Yuhan Fang
Gary G. Yen
11
41
0
30 Aug 2020
Network Architecture Search for Domain Adaptation
Network Architecture Search for Domain Adaptation
Yichen Li
Xingchao Peng
OOD
21
15
0
13 Aug 2020
Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning
Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning
Matthias Feurer
Katharina Eggensperger
Stefan Falkner
Marius Lindauer
Frank Hutter
35
266
0
08 Jul 2020
A Semi-Supervised Assessor of Neural Architectures
A Semi-Supervised Assessor of Neural Architectures
Yehui Tang
Yunhe Wang
Yixing Xu
Hanting Chen
Chunjing Xu
Boxin Shi
Chao Xu
Qi Tian
Chang Xu
16
67
0
14 May 2020
Predicting Neural Network Accuracy from Weights
Predicting Neural Network Accuracy from Weights
Thomas Unterthiner
Daniel Keysers
Sylvain Gelly
Olivier Bousquet
Ilya O. Tolstikhin
30
101
0
26 Feb 2020
Provably Efficient Online Hyperparameter Optimization with
  Population-Based Bandits
Provably Efficient Online Hyperparameter Optimization with Population-Based Bandits
Jack Parker-Holder
Vu Nguyen
Stephen J. Roberts
OffRL
75
83
0
06 Feb 2020
BISTRO: Berkeley Integrated System for Transportation Optimization
BISTRO: Berkeley Integrated System for Transportation Optimization
Sidney A. Feygin
Jessica R. Lazarus
E. Forscher
Valentine Golfier-Vetterli
Jonathan W. Lee
Abhishek Gupta
Rashid A. Waraich
C. Sheppard
Alexandre M. Bayen
19
8
0
10 Aug 2019
Towards AutoML in the presence of Drift: first results
Towards AutoML in the presence of Drift: first results
Jorge G. Madrid
Hugo Jair Escalante
E. Morales
Wei-Wei Tu
Yang Yu
Lisheng Sun-Hosoya
Isabelle M Guyon
Michele Sebag
11
25
0
24 Jul 2019
Techniques for Automated Machine Learning
Techniques for Automated Machine Learning
Yi-Wei Chen
Qingquan Song
Xia Hu
18
48
0
21 Jul 2019
Benchmark and Survey of Automated Machine Learning Frameworks
Benchmark and Survey of Automated Machine Learning Frameworks
Marc-André Zöller
Marco F. Huber
25
86
0
26 Apr 2019
Tuning Hyperparameters without Grad Students: Scalable and Robust
  Bayesian Optimisation with Dragonfly
Tuning Hyperparameters without Grad Students: Scalable and Robust Bayesian Optimisation with Dragonfly
Kirthevasan Kandasamy
Karun Raju Vysyaraju
Willie Neiswanger
Biswajit Paria
Christopher R. Collins
J. Schneider
Barnabás Póczós
Eric Xing
29
174
0
15 Mar 2019
Self-Tuning Networks: Bilevel Optimization of Hyperparameters using
  Structured Best-Response Functions
Self-Tuning Networks: Bilevel Optimization of Hyperparameters using Structured Best-Response Functions
M. Mackay
Paul Vicol
Jonathan Lorraine
David Duvenaud
Roger C. Grosse
27
164
0
07 Mar 2019
Fast Efficient Hyperparameter Tuning for Policy Gradients
Fast Efficient Hyperparameter Tuning for Policy Gradients
Supratik Paul
Vitaly Kurin
Shimon Whiteson
22
32
0
18 Feb 2019
A System for Massively Parallel Hyperparameter Tuning
A System for Massively Parallel Hyperparameter Tuning
Liam Li
Kevin G. Jamieson
Afshin Rostamizadeh
Ekaterina Gonina
Moritz Hardt
Benjamin Recht
Ameet Talwalkar
24
372
0
13 Oct 2018
Meta-Learning: A Survey
Meta-Learning: A Survey
Joaquin Vanschoren
FedML
OOD
34
756
0
08 Oct 2018
Speeding up the Hyperparameter Optimization of Deep Convolutional Neural
  Networks
Speeding up the Hyperparameter Optimization of Deep Convolutional Neural Networks
Tobias Hinz
Nicolás Navarro-Guerrero
S. Magg
S. Wermter
27
104
0
19 Jul 2018
A Tutorial on Bayesian Optimization
A Tutorial on Bayesian Optimization
P. Frazier
GP
15
1,737
0
08 Jul 2018
TAPAS: Train-less Accuracy Predictor for Architecture Search
TAPAS: Train-less Accuracy Predictor for Architecture Search
R. Istrate
F. Scheidegger
G. Mariani
Dimitrios S. Nikolopoulos
C. Bekas
A. Malossi
OOD
32
75
0
01 Jun 2018
Stochastic Hyperparameter Optimization through Hypernetworks
Stochastic Hyperparameter Optimization through Hypernetworks
Jonathan Lorraine
David Duvenaud
41
139
0
26 Feb 2018
Accelerating Neural Architecture Search using Performance Prediction
Accelerating Neural Architecture Search using Performance Prediction
Bowen Baker
O. Gupta
Ramesh Raskar
Nikhil Naik
15
30
0
30 May 2017
Bayesian Optimization with Shape Constraints
Bayesian Optimization with Shape Constraints
Michael Jauch
Víctor Pena
14
11
0
28 Dec 2016
Hypervolume-based Multi-objective Bayesian Optimization with Student-t
  Processes
Hypervolume-based Multi-objective Bayesian Optimization with Student-t Processes
J. Herten
Ivo Couckuyt
T. Dhaene
GP
11
1
0
01 Dec 2016
Efficient Hyperparameter Optimization of Deep Learning Algorithms Using
  Deterministic RBF Surrogates
Efficient Hyperparameter Optimization of Deep Learning Algorithms Using Deterministic RBF Surrogates
Ilija Ilievski
Taimoor Akhtar
Jiashi Feng
C. Shoemaker
26
150
0
28 Jul 2016
Fast Bayesian Optimization of Machine Learning Hyperparameters on Large
  Datasets
Fast Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets
Aaron Klein
Stefan Falkner
Simon Bartels
Philipp Hennig
Frank Hutter
AI4CE
35
545
0
23 May 2016
Bayesian Hyperparameter Optimization for Ensemble Learning
Bayesian Hyperparameter Optimization for Ensemble Learning
Julien-Charles Levesque
Christian Gagné
R. Sabourin
BDL
21
48
0
20 May 2016
12
Next