ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1405.5576
  4. Cited By
On the Theoretical Guarantees for Parameter Estimation of Gaussian
  Random Field Models: A Sparse Precision Matrix Approach

On the Theoretical Guarantees for Parameter Estimation of Gaussian Random Field Models: A Sparse Precision Matrix Approach

21 May 2014
S. Tajbakhsh
N. Aybat
E. Castillo
ArXivPDFHTML

Papers citing "On the Theoretical Guarantees for Parameter Estimation of Gaussian Random Field Models: A Sparse Precision Matrix Approach"

3 / 3 papers shown
Title
Unifying Compactly Supported and Matern Covariance Functions in Spatial
  Statistics
Unifying Compactly Supported and Matern Covariance Functions in Spatial Statistics
M. Bevilacqua
Christian Caamaño-Carrillo
Emilio Porcu
14
27
0
06 Aug 2020
Minimizing Negative Transfer of Knowledge in Multivariate Gaussian
  Processes: A Scalable and Regularized Approach
Minimizing Negative Transfer of Knowledge in Multivariate Gaussian Processes: A Scalable and Regularized Approach
Raed Al Kontar
Garvesh Raskutti
Shiyu Zhou
14
22
0
31 Jan 2019
Local Gaussian process approximation for large computer experiments
Local Gaussian process approximation for large computer experiments
R. Gramacy
D. Apley
127
391
0
02 Mar 2013
1