ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1405.3843
  4. Cited By
Logistic Regression: Tight Bounds for Stochastic and Online Optimization

Logistic Regression: Tight Bounds for Stochastic and Online Optimization

15 May 2014
Elad Hazan
Tomer Koren
Kfir Y. Levy
ArXivPDFHTML

Papers citing "Logistic Regression: Tight Bounds for Stochastic and Online Optimization"

1 / 1 papers shown
Title
Provably Efficient Reinforcement Learning with Multinomial Logit Function Approximation
Provably Efficient Reinforcement Learning with Multinomial Logit Function Approximation
Long-Fei Li
Yu Zhang
Peng Zhao
Zhi Zhou
152
5
0
17 Jan 2025
1