ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1404.5443
  4. Cited By
Approximate Inference for Nonstationary Heteroscedastic Gaussian process
  Regression

Approximate Inference for Nonstationary Heteroscedastic Gaussian process Regression

22 April 2014
Ville Tolvanen
Pasi Jylänki
Aki Vehtari
ArXivPDFHTML

Papers citing "Approximate Inference for Nonstationary Heteroscedastic Gaussian process Regression"

7 / 7 papers shown
Title
Bayes-Newton Methods for Approximate Bayesian Inference with PSD
  Guarantees
Bayes-Newton Methods for Approximate Bayesian Inference with PSD Guarantees
William J. Wilkinson
Simo Särkkä
Arno Solin
BDL
21
15
0
02 Nov 2021
Deep State-Space Gaussian Processes
Deep State-Space Gaussian Processes
Zheng Zhao
M. Emzir
Simo Särkkä
GP
32
19
0
11 Aug 2020
Neural Non-Stationary Spectral Kernel
Neural Non-Stationary Spectral Kernel
Sami Remes
Markus Heinonen
Samuel Kaski
BDL
16
9
0
27 Nov 2018
Gaussian process classification using posterior linearisation
Gaussian process classification using posterior linearisation
Á. F. García-Fernández
Filip Tronarp
Simo Särkkä
14
11
0
13 Sep 2018
Deep Gaussian Covariance Network
Deep Gaussian Covariance Network
K. Cremanns
D. Roos
BDL
21
20
0
17 Oct 2017
Chained Gaussian Processes
Chained Gaussian Processes
Alan D. Saul
J. Hensman
Aki Vehtari
Neil D. Lawrence
16
59
0
18 Apr 2016
Non-Stationary Gaussian Process Regression with Hamiltonian Monte Carlo
Non-Stationary Gaussian Process Regression with Hamiltonian Monte Carlo
Markus Heinonen
Henrik Mannerstrom
Juho Rousu
Samuel Kaski
Harri Lähdesmäki
22
102
0
18 Aug 2015
1