ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1404.4408
  4. Cited By
Geometric Inference for General High-Dimensional Linear Inverse Problems

Geometric Inference for General High-Dimensional Linear Inverse Problems

17 April 2014
T. Tony Cai
Tengyuan Liang
Alexander Rakhlin
ArXivPDFHTML

Papers citing "Geometric Inference for General High-Dimensional Linear Inverse Problems"

4 / 4 papers shown
Title
Uncertainty quantification for nonconvex tensor completion: Confidence
  intervals, heteroscedasticity and optimality
Uncertainty quantification for nonconvex tensor completion: Confidence intervals, heteroscedasticity and optimality
Changxiao Cai
H. Vincent Poor
Yuxin Chen
13
23
0
15 Jun 2020
Linear Regression with Sparsely Permuted Data
Linear Regression with Sparsely Permuted Data
M. Slawski
E. Ben-David
36
71
0
16 Oct 2017
A Unified Theory of Confidence Regions and Testing for High Dimensional
  Estimating Equations
A Unified Theory of Confidence Regions and Testing for High Dimensional Estimating Equations
Matey Neykov
Y. Ning
Jun S. Liu
Han Liu
21
77
0
30 Oct 2015
Computational and Statistical Boundaries for Submatrix Localization in a
  Large Noisy Matrix
Computational and Statistical Boundaries for Submatrix Localization in a Large Noisy Matrix
T. Tony Cai
Tengyuan Liang
Alexander Rakhlin
40
61
0
06 Feb 2015
1