ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1404.0202
  4. Cited By
The Horseshoe Estimator: Posterior Concentration around Nearly Black
  Vectors

The Horseshoe Estimator: Posterior Concentration around Nearly Black Vectors

1 April 2014
S. V. D. Pas
B. Kleijn
A. van der Vaart
ArXivPDFHTML

Papers citing "The Horseshoe Estimator: Posterior Concentration around Nearly Black Vectors"

19 / 19 papers shown
Title
False Discovery Rate Control via Frequentist-assisted Horseshoe
False Discovery Rate Control via Frequentist-assisted Horseshoe
Qiaoyu Liang
Zihan Zhu
Ziang Fu
Michael Evans
49
0
0
08 Feb 2025
Deep Horseshoe Gaussian Processes
Deep Horseshoe Gaussian Processes
Ismael Castillo
Thibault Randrianarisoa
BDL
UQCV
42
5
0
04 Mar 2024
Adaptive Bayesian Predictive Inference in High-dimensional Regerssion
Adaptive Bayesian Predictive Inference in High-dimensional Regerssion
Veronika Rockova
6
0
0
05 Sep 2023
Bayesian Analysis for Over-parameterized Linear Model via Effective Spectra
Bayesian Analysis for Over-parameterized Linear Model via Effective Spectra
Tomoya Wakayama
Masaaki Imaizumi
51
0
0
25 May 2023
Inference of multiple high-dimensional networks with the Graphical
  Horseshoe prior
Inference of multiple high-dimensional networks with the Graphical Horseshoe prior
Claudio Busatto
F. Stingo
28
2
0
13 Feb 2023
Autoencoded sparse Bayesian in-IRT factorization, calibration, and
  amortized inference for the Work Disability Functional Assessment Battery
Autoencoded sparse Bayesian in-IRT factorization, calibration, and amortized inference for the Work Disability Functional Assessment Battery
Joshua C. Chang
Carson C. Chow
Julia Porcino
37
1
0
20 Oct 2022
Posterior Consistency for Bayesian Relevance Vector Machines
Posterior Consistency for Bayesian Relevance Vector Machines
X. Fang
M. Ghosh
BDL
10
0
0
11 Feb 2022
Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of
  Multimodal Posteriors
Stacking for Non-mixing Bayesian Computations: The Curse and Blessing of Multimodal Posteriors
Yuling Yao
Aki Vehtari
Andrew Gelman
29
60
0
22 Jun 2020
Projective Inference in High-dimensional Problems: Prediction and
  Feature Selection
Projective Inference in High-dimensional Problems: Prediction and Feature Selection
Juho Piironen
Markus Paasiniemi
Aki Vehtari
19
94
0
04 Oct 2018
Nearly optimal Bayesian Shrinkage for High Dimensional Regression
Nearly optimal Bayesian Shrinkage for High Dimensional Regression
Qifan Song
F. Liang
16
76
0
24 Dec 2017
The Inverse Gamma-Gamma Prior for Optimal Posterior Contraction and Multiple Hypothesis Testing
Ray Bai
M. Ghosh
10
7
0
12 Oct 2017
Bayes Shrinkage at GWAS scale: Convergence and Approximation Theory of a
  Scalable MCMC Algorithm for the Horseshoe Prior
Bayes Shrinkage at GWAS scale: Convergence and Approximation Theory of a Scalable MCMC Algorithm for the Horseshoe Prior
J. Johndrow
Paulo Orenstein
A. Bhattacharya
34
23
0
02 May 2017
Uncertainty quantification for the horseshoe
Uncertainty quantification for the horseshoe
S. V. D. Pas
Botond Szabó
A. van der Vaart
27
71
0
07 Jul 2016
Needles and straw in a haystack: robust confidence for possibly sparse
  sequences
Needles and straw in a haystack: robust confidence for possibly sparse sequences
E. Belitser
N. Nurushev
22
24
0
05 Nov 2015
Fast sampling with Gaussian scale-mixture priors in high-dimensional
  regression
Fast sampling with Gaussian scale-mixture priors in high-dimensional regression
A. Bhattacharya
Antik Chakraborty
Bani Mallick
27
176
0
15 Jun 2015
Optimal Bayesian estimation in stochastic block models
Optimal Bayesian estimation in stochastic block models
D. Pati
A. Bhattacharya
30
7
0
26 May 2015
Comparison of Bayesian predictive methods for model selection
Comparison of Bayesian predictive methods for model selection
Juho Piironen
Aki Vehtari
19
279
0
30 Mar 2015
Rate-optimal posterior contraction for sparse PCA
Rate-optimal posterior contraction for sparse PCA
Chao Gao
Harrison H. Zhou
48
35
0
30 Nov 2013
The Bayesian Analysis of Complex, High-Dimensional Models: Can It Be
  CODA?
The Bayesian Analysis of Complex, High-Dimensional Models: Can It Be CODA?
Yaácov Ritov
Peter J. Bickel
A. Gamst
B. Kleijn
48
28
0
25 Mar 2012
1