Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1403.6015
Cited By
Fast Direct Methods for Gaussian Processes
24 March 2014
Sivaram Ambikasaran
D. Foreman-Mackey
L. Greengard
D. Hogg
M. O’Neil
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Fast Direct Methods for Gaussian Processes"
20 / 20 papers shown
Title
HyperController: A Hyperparameter Controller for Fast and Stable Training of Reinforcement Learning Neural Networks
J. Gornet
Yiannis Kantaros
Bruno Sinopoli
152
0
0
27 Apr 2025
Review of Recent Advances in Gaussian Process Regression Methods
Chenyi Lyu
Xingchi Liu
Lyudmila Mihaylova
GP
29
3
0
12 Sep 2024
Re-Envisioning Numerical Information Field Theory (NIFTy.re): A Library for Gaussian Processes and Variational Inference
G. Edenhofer
Philipp Frank
Jakob Roth
R. Leike
Massin Guerdi
L. Scheel-Platz
M. Guardiani
Vincent Eberle
M. Westerkamp
T. Ensslin
30
9
0
26 Feb 2024
Uniform approximation of common Gaussian process kernels using equispaced Fourier grids
A. Barnett
P. Greengard
M. Rachh
23
7
0
18 May 2023
Linear Time Kernel Matrix Approximation via Hyperspherical Harmonics
J. Ryan
Anil Damle
16
0
0
08 Feb 2022
Efficient Fourier representations of families of Gaussian processes
P. Greengard
38
3
0
28 Sep 2021
Efficient reduced-rank methods for Gaussian processes with eigenfunction expansions
P. Greengard
M. O’Neil
30
10
0
12 Aug 2021
TrimTuner: Efficient Optimization of Machine Learning Jobs in the Cloud via Sub-Sampling
Pedro Mendes
Maria Casimiro
Paolo Romano
David Garlan
8
18
0
09 Nov 2020
Time series forecasting with Gaussian Processes needs priors
Giorgio Corani
A. Benavoli
Marco Zaffalon
GP
AI4TS
15
27
0
17 Sep 2020
Sparse Cholesky factorization by Kullback-Leibler minimization
Florian Schäfer
Matthias Katzfuss
H. Owhadi
13
92
0
29 Apr 2020
Imbalance Learning for Variable Star Classification
Zafiirah Hosenie
R. Lyon
B. Stappers
A. Mootoovaloo
Vanessa McBride
10
21
0
27 Feb 2020
Leveraging Legacy Data to Accelerate Materials Design via Preference Learning
Xiaolin Sun
Z. Hou
Masato Sumita
Shinsuke Ishihara
Ryo Tamura
Koji Tsuda
9
7
0
25 Oct 2019
Multi-resolution filters for massive spatio-temporal data
M. Jurek
Matthias Katzfuss
14
24
0
09 Oct 2018
Scalable Gaussian Process Computations Using Hierarchical Matrices
Christopher J. Geoga
M. Anitescu
Michael L. Stein
15
40
0
09 Aug 2018
Dense 3-D Mapping with Spatial Correlation via Gaussian Filtering
Ke Sun
Kelsey Saulnier
Nikolay Atanasov
George J. Pappas
Vijay Kumar
21
8
0
23 Jan 2018
A class of multi-resolution approximations for large spatial datasets
Matthias Katzfuss
Wenlong Gong
GP
8
30
0
24 Oct 2017
Bayesian Inference of Log Determinants
Jack K. Fitzsimons
Kurt Cutajar
Michael A. Osborne
Stephen J. Roberts
Maurizio Filippone
28
18
0
05 Apr 2017
GPflow: A Gaussian process library using TensorFlow
A. G. Matthews
Mark van der Wilk
T. Nickson
Keisuke Fujii
A. Boukouvalas
Pablo León-Villagrá
Zoubin Ghahramani
J. Hensman
GP
16
657
0
27 Oct 2016
Estimation and Prediction using generalized Wendland Covariance Functions under fixed domain asymptotics
M. Bevilacqua
Tarik Faouzi
Reinhard Furrer
Emilio Porcu
26
72
0
23 Jul 2016
A Framework for Evaluating Approximation Methods for Gaussian Process Regression
Krzysztof Chalupka
Christopher K. I. Williams
Iain Murray
GP
71
169
0
29 May 2012
1