ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1403.6015
  4. Cited By
Fast Direct Methods for Gaussian Processes

Fast Direct Methods for Gaussian Processes

24 March 2014
Sivaram Ambikasaran
D. Foreman-Mackey
L. Greengard
D. Hogg
M. O’Neil
ArXivPDFHTML

Papers citing "Fast Direct Methods for Gaussian Processes"

20 / 20 papers shown
Title
HyperController: A Hyperparameter Controller for Fast and Stable Training of Reinforcement Learning Neural Networks
HyperController: A Hyperparameter Controller for Fast and Stable Training of Reinforcement Learning Neural Networks
J. Gornet
Yiannis Kantaros
Bruno Sinopoli
152
0
0
27 Apr 2025
Review of Recent Advances in Gaussian Process Regression Methods
Review of Recent Advances in Gaussian Process Regression Methods
Chenyi Lyu
Xingchi Liu
Lyudmila Mihaylova
GP
29
3
0
12 Sep 2024
Re-Envisioning Numerical Information Field Theory (NIFTy.re): A Library
  for Gaussian Processes and Variational Inference
Re-Envisioning Numerical Information Field Theory (NIFTy.re): A Library for Gaussian Processes and Variational Inference
G. Edenhofer
Philipp Frank
Jakob Roth
R. Leike
Massin Guerdi
L. Scheel-Platz
M. Guardiani
Vincent Eberle
M. Westerkamp
T. Ensslin
30
9
0
26 Feb 2024
Uniform approximation of common Gaussian process kernels using
  equispaced Fourier grids
Uniform approximation of common Gaussian process kernels using equispaced Fourier grids
A. Barnett
P. Greengard
M. Rachh
23
7
0
18 May 2023
Linear Time Kernel Matrix Approximation via Hyperspherical Harmonics
Linear Time Kernel Matrix Approximation via Hyperspherical Harmonics
J. Ryan
Anil Damle
16
0
0
08 Feb 2022
Efficient Fourier representations of families of Gaussian processes
Efficient Fourier representations of families of Gaussian processes
P. Greengard
38
3
0
28 Sep 2021
Efficient reduced-rank methods for Gaussian processes with eigenfunction
  expansions
Efficient reduced-rank methods for Gaussian processes with eigenfunction expansions
P. Greengard
M. O’Neil
30
10
0
12 Aug 2021
TrimTuner: Efficient Optimization of Machine Learning Jobs in the Cloud
  via Sub-Sampling
TrimTuner: Efficient Optimization of Machine Learning Jobs in the Cloud via Sub-Sampling
Pedro Mendes
Maria Casimiro
Paolo Romano
David Garlan
8
18
0
09 Nov 2020
Time series forecasting with Gaussian Processes needs priors
Time series forecasting with Gaussian Processes needs priors
Giorgio Corani
A. Benavoli
Marco Zaffalon
GP
AI4TS
15
27
0
17 Sep 2020
Sparse Cholesky factorization by Kullback-Leibler minimization
Sparse Cholesky factorization by Kullback-Leibler minimization
Florian Schäfer
Matthias Katzfuss
H. Owhadi
13
92
0
29 Apr 2020
Imbalance Learning for Variable Star Classification
Imbalance Learning for Variable Star Classification
Zafiirah Hosenie
R. Lyon
B. Stappers
A. Mootoovaloo
Vanessa McBride
10
21
0
27 Feb 2020
Leveraging Legacy Data to Accelerate Materials Design via Preference
  Learning
Leveraging Legacy Data to Accelerate Materials Design via Preference Learning
Xiaolin Sun
Z. Hou
Masato Sumita
Shinsuke Ishihara
Ryo Tamura
Koji Tsuda
9
7
0
25 Oct 2019
Multi-resolution filters for massive spatio-temporal data
Multi-resolution filters for massive spatio-temporal data
M. Jurek
Matthias Katzfuss
14
24
0
09 Oct 2018
Scalable Gaussian Process Computations Using Hierarchical Matrices
Scalable Gaussian Process Computations Using Hierarchical Matrices
Christopher J. Geoga
M. Anitescu
Michael L. Stein
15
40
0
09 Aug 2018
Dense 3-D Mapping with Spatial Correlation via Gaussian Filtering
Dense 3-D Mapping with Spatial Correlation via Gaussian Filtering
Ke Sun
Kelsey Saulnier
Nikolay Atanasov
George J. Pappas
Vijay Kumar
21
8
0
23 Jan 2018
A class of multi-resolution approximations for large spatial datasets
A class of multi-resolution approximations for large spatial datasets
Matthias Katzfuss
Wenlong Gong
GP
8
30
0
24 Oct 2017
Bayesian Inference of Log Determinants
Bayesian Inference of Log Determinants
Jack K. Fitzsimons
Kurt Cutajar
Michael A. Osborne
Stephen J. Roberts
Maurizio Filippone
28
18
0
05 Apr 2017
GPflow: A Gaussian process library using TensorFlow
GPflow: A Gaussian process library using TensorFlow
A. G. Matthews
Mark van der Wilk
T. Nickson
Keisuke Fujii
A. Boukouvalas
Pablo León-Villagrá
Zoubin Ghahramani
J. Hensman
GP
16
657
0
27 Oct 2016
Estimation and Prediction using generalized Wendland Covariance
  Functions under fixed domain asymptotics
Estimation and Prediction using generalized Wendland Covariance Functions under fixed domain asymptotics
M. Bevilacqua
Tarik Faouzi
Reinhard Furrer
Emilio Porcu
26
72
0
23 Jul 2016
A Framework for Evaluating Approximation Methods for Gaussian Process
  Regression
A Framework for Evaluating Approximation Methods for Gaussian Process Regression
Krzysztof Chalupka
Christopher K. I. Williams
Iain Murray
GP
71
169
0
29 May 2012
1