Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1402.6278
Cited By
Sample Complexity Bounds on Differentially Private Learning via Communication Complexity
25 February 2014
Vitaly Feldman
David Xiao
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Sample Complexity Bounds on Differentially Private Learning via Communication Complexity"
19 / 19 papers shown
Title
An \tilde{O}ptimal Differentially Private Learner for Concept Classes with VC Dimension 1
Chao Yan
21
0
0
10 May 2025
Improved Bounds for Pure Private Agnostic Learning: Item-Level and User-Level Privacy
Bo Li
Wei Wang
Peng Ye
FedML
36
0
0
30 Jul 2024
PILLAR: How to make semi-private learning more effective
Francesco Pinto
Yaxian Hu
Fanny Yang
Amartya Sanyal
46
11
0
06 Jun 2023
A Unified Characterization of Private Learnability via Graph Theory
N. Alon
Shay Moran
Hilla Schefler
Amir Yehudayoff
29
2
0
08 Apr 2023
Optimal Prediction Using Expert Advice and Randomized Littlestone Dimension
Yuval Filmus
Steve Hanneke
Idan Mehalel
Shay Moran
20
11
0
27 Feb 2023
Certified private data release for sparse Lipschitz functions
Konstantin Donhauser
J. Lokna
Amartya Sanyal
M. Boedihardjo
R. Honig
Fanny Yang
46
3
0
19 Feb 2023
Private Isotonic Regression
Badih Ghazi
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
21
0
0
27 Oct 2022
Algorithms with More Granular Differential Privacy Guarantees
Badih Ghazi
Ravi Kumar
Pasin Manurangsi
Thomas Steinke
59
6
0
08 Sep 2022
Memory Bounds for Continual Learning
Xi Chen
Christos H. Papadimitriou
Binghui Peng
CLL
LRM
29
22
0
22 Apr 2022
Provably Private Distributed Averaging Consensus: An Information-Theoretic Approach
Mohammad Fereydounian
Aryan Mokhtari
Ramtin Pedarsani
Hamed Hassani
FedML
27
2
0
18 Feb 2022
Reproducibility in Learning
R. Impagliazzo
Rex Lei
T. Pitassi
Jessica Sorrell
21
43
0
20 Jan 2022
An Equivalence Between Private Classification and Online Prediction
Mark Bun
Roi Livni
Shay Moran
21
75
0
01 Mar 2020
Quantum statistical query learning
Srinivasan Arunachalam
A. Grilo
Henry Yuen
17
32
0
19 Feb 2020
The power of synergy in differential privacy: Combining a small curator with local randomizers
A. Beimel
Aleksandra Korolova
Kobbi Nissim
Or Sheffet
Uri Stemmer
26
14
0
18 Dec 2019
Privately Learning Thresholds: Closing the Exponential Gap
Haim Kaplan
Katrina Ligett
Yishay Mansour
M. Naor
Uri Stemmer
23
55
0
22 Nov 2019
Private PAC learning implies finite Littlestone dimension
N. Alon
Roi Livni
M. Malliaris
Shay Moran
20
109
0
04 Jun 2018
Privacy-preserving Prediction
Cynthia Dwork
Vitaly Feldman
22
90
0
27 Mar 2018
Order-Revealing Encryption and the Hardness of Private Learning
Mark Bun
Mark Zhandry
FedML
30
34
0
03 May 2015
Learning Privately with Labeled and Unlabeled Examples
A. Beimel
Kobbi Nissim
Uri Stemmer
35
23
0
10 Jul 2014
1