ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1402.1389
  4. Cited By
Distributed Variational Inference in Sparse Gaussian Process Regression
  and Latent Variable Models

Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models

6 February 2014
Y. Gal
Mark van der Wilk
C. Rasmussen
ArXivPDFHTML

Papers citing "Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models"

22 / 22 papers shown
Title
Memory Safe Computations with XLA Compiler
Memory Safe Computations with XLA Compiler
A. Artemev
Tilman Roeder
Mark van der Wilk
29
8
0
28 Jun 2022
Fast Gaussian Process Posterior Mean Prediction via Local Cross
  Validation and Precomputation
Fast Gaussian Process Posterior Mean Prediction via Local Cross Validation and Precomputation
Alec M. Dunton
Benjamin W. Priest
Amanda Muyskens
GP
32
3
0
22 May 2022
Learning Multi-Task Gaussian Process Over Heterogeneous Input Domains
Learning Multi-Task Gaussian Process Over Heterogeneous Input Domains
Haitao Liu
Kai Wu
Yew-Soon Ong
Chao Bian
Xiaomo Jiang
Xiaofang Wang
19
7
0
25 Feb 2022
Adaptive Cholesky Gaussian Processes
Adaptive Cholesky Gaussian Processes
Simon Bartels
Kristoffer Stensbo-Smidt
Pablo Moreno-Muñoz
Wouter Boomsma
J. Frellsen
Søren Hauberg
33
3
0
22 Feb 2022
Recent Advances in Data-Driven Wireless Communication Using Gaussian
  Processes: A Comprehensive Survey
Recent Advances in Data-Driven Wireless Communication Using Gaussian Processes: A Comprehensive Survey
Kai Chen
Qinglei Kong
Yijue Dai
Yue Xu
Feng Yin
Lexi Xu
Shuguang Cui
35
30
0
18 Mar 2021
Implicit Posterior Variational Inference for Deep Gaussian Processes
Implicit Posterior Variational Inference for Deep Gaussian Processes
Haibin Yu
Yizhou Chen
Zhongxiang Dai
K. H. Low
Patrick Jaillet
19
42
0
26 Oct 2019
Online Anomaly Detection with Sparse Gaussian Processes
Online Anomaly Detection with Sparse Gaussian Processes
Jingjing Fei
Shiliang Sun
AI4TS
21
20
0
14 May 2019
Structured Bayesian Gaussian process latent variable model: applications
  to data-driven dimensionality reduction and high-dimensional inversion
Structured Bayesian Gaussian process latent variable model: applications to data-driven dimensionality reduction and high-dimensional inversion
Steven Atkinson
N. Zabaras
16
36
0
11 Jul 2018
Generalized Robust Bayesian Committee Machine for Large-scale Gaussian
  Process Regression
Generalized Robust Bayesian Committee Machine for Large-scale Gaussian Process Regression
Haitao Liu
Jianfei Cai
Yi Wang
Yew-Soon Ong
23
83
0
03 Jun 2018
Advances in Variational Inference
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
38
684
0
15 Nov 2017
AutoGP: Exploring the Capabilities and Limitations of Gaussian Process
  Models
AutoGP: Exploring the Capabilities and Limitations of Gaussian Process Models
K. Krauth
Edwin V. Bonilla
Kurt Cutajar
Maurizio Filippone
GP
BDL
16
54
0
18 Oct 2016
Chained Gaussian Processes
Chained Gaussian Processes
Alan D. Saul
J. Hensman
Aki Vehtari
Neil D. Lawrence
16
59
0
18 Apr 2016
Multi-view Learning as a Nonparametric Nonlinear Inter-Battery Factor
  Analysis
Multi-view Learning as a Nonparametric Nonlinear Inter-Battery Factor Analysis
Andreas C. Damianou
Neil D. Lawrence
Carl Henrik Ek
16
12
0
17 Apr 2016
System Identification through Online Sparse Gaussian Process Regression
  with Input Noise
System Identification through Online Sparse Gaussian Process Regression with Input Noise
Hildo Bijl
Thomas B. Schon
J. Wingerden
M. Verhaegen
39
41
0
29 Jan 2016
Variational Auto-encoded Deep Gaussian Processes
Variational Auto-encoded Deep Gaussian Processes
Zhenwen Dai
Andreas C. Damianou
Javier I. González
Neil D. Lawrence
BDL
24
131
0
19 Nov 2015
Bayesian Optimization with Dimension Scheduling: Application to
  Biological Systems
Bayesian Optimization with Dimension Scheduling: Application to Biological Systems
Doniyor Ulmasov
C. Baroukh
Benoît Chachuat
M. Deisenroth
Ruth Misener
23
40
0
17 Nov 2015
Gaussian Process Random Fields
Gaussian Process Random Fields
David A. Moore
Stuart J. Russell
GP
19
19
0
31 Oct 2015
Blitzkriging: Kronecker-structured Stochastic Gaussian Processes
Blitzkriging: Kronecker-structured Stochastic Gaussian Processes
T. Nickson
Tom Gunter
C. Lloyd
Michael A. Osborne
Stephen J. Roberts
19
21
0
27 Oct 2015
Mondrian Forests for Large-Scale Regression when Uncertainty Matters
Mondrian Forests for Large-Scale Regression when Uncertainty Matters
Balaji Lakshminarayanan
Daniel M. Roy
Yee Whye Teh
UQCV
26
56
0
11 Jun 2015
Improving the Gaussian Process Sparse Spectrum Approximation by
  Representing Uncertainty in Frequency Inputs
Improving the Gaussian Process Sparse Spectrum Approximation by Representing Uncertainty in Frequency Inputs
Y. Gal
Richard Turner
21
78
0
09 Mar 2015
Hierarchical Mixture-of-Experts Model for Large-Scale Gaussian Process
  Regression
Hierarchical Mixture-of-Experts Model for Large-Scale Gaussian Process Regression
Jun Wei Ng
M. Deisenroth
31
51
0
09 Dec 2014
Variational Inference for Uncertainty on the Inputs of Gaussian Process
  Models
Variational Inference for Uncertainty on the Inputs of Gaussian Process Models
Andreas C. Damianou
Michalis K. Titsias
Neil D. Lawrence
41
25
0
08 Sep 2014
1