Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1402.1389
Cited By
Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models
6 February 2014
Y. Gal
Mark van der Wilk
C. Rasmussen
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Distributed Variational Inference in Sparse Gaussian Process Regression and Latent Variable Models"
22 / 22 papers shown
Title
Memory Safe Computations with XLA Compiler
A. Artemev
Tilman Roeder
Mark van der Wilk
29
8
0
28 Jun 2022
Fast Gaussian Process Posterior Mean Prediction via Local Cross Validation and Precomputation
Alec M. Dunton
Benjamin W. Priest
Amanda Muyskens
GP
32
3
0
22 May 2022
Learning Multi-Task Gaussian Process Over Heterogeneous Input Domains
Haitao Liu
Kai Wu
Yew-Soon Ong
Chao Bian
Xiaomo Jiang
Xiaofang Wang
19
7
0
25 Feb 2022
Adaptive Cholesky Gaussian Processes
Simon Bartels
Kristoffer Stensbo-Smidt
Pablo Moreno-Muñoz
Wouter Boomsma
J. Frellsen
Søren Hauberg
33
3
0
22 Feb 2022
Recent Advances in Data-Driven Wireless Communication Using Gaussian Processes: A Comprehensive Survey
Kai Chen
Qinglei Kong
Yijue Dai
Yue Xu
Feng Yin
Lexi Xu
Shuguang Cui
35
30
0
18 Mar 2021
Implicit Posterior Variational Inference for Deep Gaussian Processes
Haibin Yu
Yizhou Chen
Zhongxiang Dai
K. H. Low
Patrick Jaillet
19
42
0
26 Oct 2019
Online Anomaly Detection with Sparse Gaussian Processes
Jingjing Fei
Shiliang Sun
AI4TS
21
20
0
14 May 2019
Structured Bayesian Gaussian process latent variable model: applications to data-driven dimensionality reduction and high-dimensional inversion
Steven Atkinson
N. Zabaras
16
36
0
11 Jul 2018
Generalized Robust Bayesian Committee Machine for Large-scale Gaussian Process Regression
Haitao Liu
Jianfei Cai
Yi Wang
Yew-Soon Ong
23
83
0
03 Jun 2018
Advances in Variational Inference
Cheng Zhang
Judith Butepage
Hedvig Kjellström
Stephan Mandt
BDL
38
684
0
15 Nov 2017
AutoGP: Exploring the Capabilities and Limitations of Gaussian Process Models
K. Krauth
Edwin V. Bonilla
Kurt Cutajar
Maurizio Filippone
GP
BDL
16
54
0
18 Oct 2016
Chained Gaussian Processes
Alan D. Saul
J. Hensman
Aki Vehtari
Neil D. Lawrence
16
59
0
18 Apr 2016
Multi-view Learning as a Nonparametric Nonlinear Inter-Battery Factor Analysis
Andreas C. Damianou
Neil D. Lawrence
Carl Henrik Ek
16
12
0
17 Apr 2016
System Identification through Online Sparse Gaussian Process Regression with Input Noise
Hildo Bijl
Thomas B. Schon
J. Wingerden
M. Verhaegen
39
41
0
29 Jan 2016
Variational Auto-encoded Deep Gaussian Processes
Zhenwen Dai
Andreas C. Damianou
Javier I. González
Neil D. Lawrence
BDL
24
131
0
19 Nov 2015
Bayesian Optimization with Dimension Scheduling: Application to Biological Systems
Doniyor Ulmasov
C. Baroukh
Benoît Chachuat
M. Deisenroth
Ruth Misener
23
40
0
17 Nov 2015
Gaussian Process Random Fields
David A. Moore
Stuart J. Russell
GP
19
19
0
31 Oct 2015
Blitzkriging: Kronecker-structured Stochastic Gaussian Processes
T. Nickson
Tom Gunter
C. Lloyd
Michael A. Osborne
Stephen J. Roberts
19
21
0
27 Oct 2015
Mondrian Forests for Large-Scale Regression when Uncertainty Matters
Balaji Lakshminarayanan
Daniel M. Roy
Yee Whye Teh
UQCV
26
56
0
11 Jun 2015
Improving the Gaussian Process Sparse Spectrum Approximation by Representing Uncertainty in Frequency Inputs
Y. Gal
Richard Turner
21
78
0
09 Mar 2015
Hierarchical Mixture-of-Experts Model for Large-Scale Gaussian Process Regression
Jun Wei Ng
M. Deisenroth
31
51
0
09 Dec 2014
Variational Inference for Uncertainty on the Inputs of Gaussian Process Models
Andreas C. Damianou
Michalis K. Titsias
Neil D. Lawrence
41
25
0
08 Sep 2014
1