Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1402.0929
Cited By
Input Warping for Bayesian Optimization of Non-stationary Functions
5 February 2014
Jasper Snoek
Kevin Swersky
R. Zemel
Ryan P. Adams
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Input Warping for Bayesian Optimization of Non-stationary Functions"
50 / 52 papers shown
Title
From Automation to Autonomy in Smart Manufacturing: A Bayesian Optimization Framework for Modeling Multi-Objective Experimentation and Sequential Decision Making
Avijit Saha Asru
H. Khosravi
I. Imtiaz Ahmed
Abdullahil Azeem
176
0
0
05 Apr 2025
SEEK: Self-adaptive Explainable Kernel For Nonstationary Gaussian Processes
Nima Negarandeh
Carlos Mora
Ramin Bostanabad
55
0
0
18 Mar 2025
Toward Automated Algorithm Design: A Survey and Practical Guide to Meta-Black-Box-Optimization
Zeyuan Ma
Hongshu Guo
Yue-jiao Gong
Jun Zhang
Kay Chen Tan
119
2
0
01 Nov 2024
Bayesian Optimization with Adaptive Kernels for Robot Control
Ruben Martinez-Cantin
14
37
0
10 Feb 2024
Vanilla Bayesian Optimization Performs Great in High Dimensions
Carl Hvarfner
E. Hellsten
Luigi Nardi
34
17
0
03 Feb 2024
Tailoring Mixup to Data for Calibration
Quentin Bouniot
Pavlo Mozharovskyi
Florence dÁlché-Buc
61
1
0
02 Nov 2023
Mixtures of Gaussian process experts based on kernel stick-breaking processes
Yuji Saikai
Khue-Dung Dang
17
0
0
26 Apr 2023
Unleashing the Potential of Acquisition Functions in High-Dimensional Bayesian Optimization
Jiayu Zhao
Renyu Yang
Shenghao Qiu
Zheng Wang
16
4
0
16 Feb 2023
Non-Gaussian Process Regression
Y. Kindap
S. Godsill
GP
13
1
0
07 Sep 2022
Bayesian Optimization with Informative Covariance
Afonso Eduardo
Michael U. Gutmann
24
3
0
04 Aug 2022
Heuristic-free Optimization of Force-Controlled Robot Search Strategies in Stochastic Environments
Bastian Alt
Darko Katic
Rainer Jäkel
Michael Beetz
23
6
0
15 Jul 2022
Recent Advances in Bayesian Optimization
Xilu Wang
Yaochu Jin
Sebastian Schmitt
Markus Olhofer
40
200
0
07 Jun 2022
Efficient Transformed Gaussian Processes for Non-Stationary Dependent Multi-class Classification
Juan Maroñas
Daniel Hernández-Lobato
19
6
0
30 May 2022
Scalable Bayesian Optimization Using Vecchia Approximations of Gaussian Processes
Felix Jimenez
Matthias Katzfuss
21
10
0
02 Mar 2022
Adaptive Gradient Methods with Local Guarantees
Zhou Lu
Wenhan Xia
Sanjeev Arora
Elad Hazan
ODL
27
9
0
02 Mar 2022
B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search
Hyunghun Cho
Jungwook Shin
Wonjong Rhee
33
7
0
07 Feb 2022
Online Calibrated and Conformal Prediction Improves Bayesian Optimization
Shachi Deshpande
Charles Marx
Volodymyr Kuleshov
13
7
0
08 Dec 2021
Multi-Objective Bayesian Optimization over High-Dimensional Search Spaces
Sam Daulton
David Eriksson
Maximilian Balandat
E. Bakshy
22
105
0
22 Sep 2021
Non-smooth Bayesian Optimization in Tuning Problems
Hengrui Luo
J. Demmel
Younghyun Cho
Xin Li
Yang Liu
25
13
0
15 Sep 2021
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges
B. Bischl
Martin Binder
Michel Lang
Tobias Pielok
Jakob Richter
...
Theresa Ullmann
Marc Becker
A. Boulesteix
Difan Deng
Marius Lindauer
85
455
0
13 Jul 2021
Bag of Baselines for Multi-objective Joint Neural Architecture Search and Hyperparameter Optimization
Julia Guerrero-Viu
Sven Hauns
Sergio Izquierdo
Guilherme Miotto
Simon Schrodi
André Biedenkapp
T. Elsken
Difan Deng
Marius Lindauer
Frank Hutter
AI4CE
17
25
0
03 May 2021
Revisiting Bayesian Optimization in the light of the COCO benchmark
Rodolphe Le Riche
Victor Picheny
16
26
0
30 Mar 2021
Learning to Optimize: A Primer and A Benchmark
Tianlong Chen
Xiaohan Chen
Wuyang Chen
Howard Heaton
Jialin Liu
Zhangyang Wang
W. Yin
54
225
0
23 Mar 2021
Amazon SageMaker Automatic Model Tuning: Scalable Gradient-Free Optimization
Valerio Perrone
Huibin Shen
Aida Zolic
I. Shcherbatyi
Amr Ahmed
...
Barbara Pogorzelska
Miroslav Miladinovic
K. Kenthapadi
Matthias Seeger
Cédric Archambeau
45
16
0
15 Dec 2020
Neural fidelity warping for efficient robot morphology design
Sha Hu
Zeshi Yang
Greg Mori
55
4
0
08 Dec 2020
HEBO Pushing The Limits of Sample-Efficient Hyperparameter Optimisation
Alexander I. Cowen-Rivers
Wenlong Lyu
Rasul Tutunov
Zhi Wang
Antoine Grosnit
...
A. Maraval
Hao Jianye
Jun Wang
Jan Peters
H. Ammar
27
74
0
07 Dec 2020
Scalable Constrained Bayesian Optimization
David Eriksson
Matthias Poloczek
33
95
0
20 Feb 2020
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
Maximilian Balandat
Brian Karrer
Daniel R. Jiang
Sam Daulton
Benjamin Letham
A. Wilson
E. Bakshy
32
93
0
14 Oct 2019
Scalable Global Optimization via Local Bayesian Optimization
Samyam Rajbhandari
Michael Pearce
Jacob R. Gardner
Ryan D. Turner
Matthias Poloczek
48
450
0
03 Oct 2019
Learning search spaces for Bayesian optimization: Another view of hyperparameter transfer learning
Valerio Perrone
Huibin Shen
Matthias Seeger
Cédric Archambeau
Rodolphe Jenatton
27
96
0
27 Sep 2019
Reducing The Search Space For Hyperparameter Optimization Using Group Sparsity
Minsu Cho
C. Hegde
19
11
0
24 Apr 2019
An Ensemble of Epoch-wise Empirical Bayes for Few-shot Learning
Yaoyao Liu
Bernt Schiele
Qianru Sun
BDL
38
128
0
17 Apr 2019
Fast Efficient Hyperparameter Tuning for Policy Gradients
Supratik Paul
Vitaly Kurin
Shimon Whiteson
22
32
0
18 Feb 2019
Multi-level CNN for lung nodule classification with Gaussian Process assisted hyperparameter optimization
Miao Zhang
Huiqi Li
Juan Lyu
S. Ling
Steven W. Su
AI4CE
17
11
0
02 Jan 2019
Neural Non-Stationary Spectral Kernel
Sami Remes
Markus Heinonen
Samuel Kaski
BDL
16
9
0
27 Nov 2018
A Tutorial on Bayesian Optimization
P. Frazier
GP
15
1,737
0
08 Jul 2018
A unified strategy for implementing curiosity and empowerment driven reinforcement learning
Ildefons Magrans de Abril
Ryota Kanai
17
18
0
18 Jun 2018
BOCK : Bayesian Optimization with Cylindrical Kernels
Changyong Oh
E. Gavves
Max Welling
23
135
0
05 Jun 2018
Bayesian Alignments of Warped Multi-Output Gaussian Processes
Markus Kaiser
Clemens Otte
Thomas Runkler
Carl Henrik Ek
24
19
0
08 Oct 2017
Hyperparameter Optimization: A Spectral Approach
Elad Hazan
Adam R. Klivans
Yang Yuan
27
118
0
02 Jun 2017
Practical heteroskedastic Gaussian process modeling for large simulation experiments
M. Binois
R. Gramacy
M. Ludkovski
30
181
0
17 Nov 2016
Learning to Learn without Gradient Descent by Gradient Descent
Yutian Chen
Matthew W. Hoffman
Sergio Gomez Colmenarejo
Misha Denil
Timothy Lillicrap
Matt Botvinick
Nando de Freitas
21
42
0
11 Nov 2016
Differentially Private Gaussian Processes
M. Smith
Max Zwiessele
Neil D. Lawrence
13
15
0
02 Jun 2016
Fast Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets
Aaron Klein
Stefan Falkner
Simon Bartels
Philipp Hennig
Frank Hutter
AI4CE
35
545
0
23 May 2016
Online Optimization of Smoothed Piecewise Constant Functions
Vincent Cohen-Addad
Varun Kanade
17
25
0
07 Apr 2016
Non-Stationary Gaussian Process Regression with Hamiltonian Monte Carlo
Markus Heinonen
Henrik Mannerstrom
Juho Rousu
Samuel Kaski
Harri Lähdesmäki
25
102
0
18 Aug 2015
Non-stochastic Best Arm Identification and Hyperparameter Optimization
Kevin G. Jamieson
Ameet Talwalkar
47
565
0
27 Feb 2015
Show, Attend and Tell: Neural Image Caption Generation with Visual Attention
Ke Xu
Jimmy Ba
Ryan Kiros
Kyunghyun Cho
Aaron Courville
Ruslan Salakhutdinov
R. Zemel
Yoshua Bengio
DiffM
121
10,008
0
10 Feb 2015
Multi-task Neural Networks for QSAR Predictions
George E. Dahl
Navdeep Jaitly
Ruslan Salakhutdinov
62
277
0
04 Jun 2014
Manifold Gaussian Processes for Regression
Roberto Calandra
Jan Peters
C. Rasmussen
M. Deisenroth
92
271
0
24 Feb 2014
1
2
Next