ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1402.0929
  4. Cited By
Input Warping for Bayesian Optimization of Non-stationary Functions

Input Warping for Bayesian Optimization of Non-stationary Functions

5 February 2014
Jasper Snoek
Kevin Swersky
R. Zemel
Ryan P. Adams
ArXivPDFHTML

Papers citing "Input Warping for Bayesian Optimization of Non-stationary Functions"

50 / 52 papers shown
Title
From Automation to Autonomy in Smart Manufacturing: A Bayesian Optimization Framework for Modeling Multi-Objective Experimentation and Sequential Decision Making
From Automation to Autonomy in Smart Manufacturing: A Bayesian Optimization Framework for Modeling Multi-Objective Experimentation and Sequential Decision Making
Avijit Saha Asru
H. Khosravi
I. Imtiaz Ahmed
Abdullahil Azeem
176
0
0
05 Apr 2025
SEEK: Self-adaptive Explainable Kernel For Nonstationary Gaussian Processes
SEEK: Self-adaptive Explainable Kernel For Nonstationary Gaussian Processes
Nima Negarandeh
Carlos Mora
Ramin Bostanabad
55
0
0
18 Mar 2025
Toward Automated Algorithm Design: A Survey and Practical Guide to Meta-Black-Box-Optimization
Toward Automated Algorithm Design: A Survey and Practical Guide to Meta-Black-Box-Optimization
Zeyuan Ma
Hongshu Guo
Yue-jiao Gong
Jun Zhang
Kay Chen Tan
119
2
0
01 Nov 2024
Bayesian Optimization with Adaptive Kernels for Robot Control
Bayesian Optimization with Adaptive Kernels for Robot Control
Ruben Martinez-Cantin
14
37
0
10 Feb 2024
Vanilla Bayesian Optimization Performs Great in High Dimensions
Vanilla Bayesian Optimization Performs Great in High Dimensions
Carl Hvarfner
E. Hellsten
Luigi Nardi
34
17
0
03 Feb 2024
Tailoring Mixup to Data for Calibration
Tailoring Mixup to Data for Calibration
Quentin Bouniot
Pavlo Mozharovskyi
Florence dÁlché-Buc
61
1
0
02 Nov 2023
Mixtures of Gaussian process experts based on kernel stick-breaking
  processes
Mixtures of Gaussian process experts based on kernel stick-breaking processes
Yuji Saikai
Khue-Dung Dang
17
0
0
26 Apr 2023
Unleashing the Potential of Acquisition Functions in High-Dimensional
  Bayesian Optimization
Unleashing the Potential of Acquisition Functions in High-Dimensional Bayesian Optimization
Jiayu Zhao
Renyu Yang
Shenghao Qiu
Zheng Wang
16
4
0
16 Feb 2023
Non-Gaussian Process Regression
Non-Gaussian Process Regression
Y. Kindap
S. Godsill
GP
13
1
0
07 Sep 2022
Bayesian Optimization with Informative Covariance
Bayesian Optimization with Informative Covariance
Afonso Eduardo
Michael U. Gutmann
24
3
0
04 Aug 2022
Heuristic-free Optimization of Force-Controlled Robot Search Strategies
  in Stochastic Environments
Heuristic-free Optimization of Force-Controlled Robot Search Strategies in Stochastic Environments
Bastian Alt
Darko Katic
Rainer Jäkel
Michael Beetz
23
6
0
15 Jul 2022
Recent Advances in Bayesian Optimization
Recent Advances in Bayesian Optimization
Xilu Wang
Yaochu Jin
Sebastian Schmitt
Markus Olhofer
40
200
0
07 Jun 2022
Efficient Transformed Gaussian Processes for Non-Stationary Dependent
  Multi-class Classification
Efficient Transformed Gaussian Processes for Non-Stationary Dependent Multi-class Classification
Juan Maroñas
Daniel Hernández-Lobato
19
6
0
30 May 2022
Scalable Bayesian Optimization Using Vecchia Approximations of Gaussian
  Processes
Scalable Bayesian Optimization Using Vecchia Approximations of Gaussian Processes
Felix Jimenez
Matthias Katzfuss
21
10
0
02 Mar 2022
Adaptive Gradient Methods with Local Guarantees
Adaptive Gradient Methods with Local Guarantees
Zhou Lu
Wenhan Xia
Sanjeev Arora
Elad Hazan
ODL
27
9
0
02 Mar 2022
B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization
  Modules for Neural Architecture Search
B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search
Hyunghun Cho
Jungwook Shin
Wonjong Rhee
33
7
0
07 Feb 2022
Online Calibrated and Conformal Prediction Improves Bayesian
  Optimization
Online Calibrated and Conformal Prediction Improves Bayesian Optimization
Shachi Deshpande
Charles Marx
Volodymyr Kuleshov
13
7
0
08 Dec 2021
Multi-Objective Bayesian Optimization over High-Dimensional Search
  Spaces
Multi-Objective Bayesian Optimization over High-Dimensional Search Spaces
Sam Daulton
David Eriksson
Maximilian Balandat
E. Bakshy
22
105
0
22 Sep 2021
Non-smooth Bayesian Optimization in Tuning Problems
Non-smooth Bayesian Optimization in Tuning Problems
Hengrui Luo
J. Demmel
Younghyun Cho
Xin Li
Yang Liu
25
13
0
15 Sep 2021
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and
  Open Challenges
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges
B. Bischl
Martin Binder
Michel Lang
Tobias Pielok
Jakob Richter
...
Theresa Ullmann
Marc Becker
A. Boulesteix
Difan Deng
Marius Lindauer
85
455
0
13 Jul 2021
Bag of Baselines for Multi-objective Joint Neural Architecture Search
  and Hyperparameter Optimization
Bag of Baselines for Multi-objective Joint Neural Architecture Search and Hyperparameter Optimization
Julia Guerrero-Viu
Sven Hauns
Sergio Izquierdo
Guilherme Miotto
Simon Schrodi
André Biedenkapp
T. Elsken
Difan Deng
Marius Lindauer
Frank Hutter
AI4CE
17
25
0
03 May 2021
Revisiting Bayesian Optimization in the light of the COCO benchmark
Revisiting Bayesian Optimization in the light of the COCO benchmark
Rodolphe Le Riche
Victor Picheny
16
26
0
30 Mar 2021
Learning to Optimize: A Primer and A Benchmark
Learning to Optimize: A Primer and A Benchmark
Tianlong Chen
Xiaohan Chen
Wuyang Chen
Howard Heaton
Jialin Liu
Zhangyang Wang
W. Yin
54
225
0
23 Mar 2021
Amazon SageMaker Automatic Model Tuning: Scalable Gradient-Free
  Optimization
Amazon SageMaker Automatic Model Tuning: Scalable Gradient-Free Optimization
Valerio Perrone
Huibin Shen
Aida Zolic
I. Shcherbatyi
Amr Ahmed
...
Barbara Pogorzelska
Miroslav Miladinovic
K. Kenthapadi
Matthias Seeger
Cédric Archambeau
45
16
0
15 Dec 2020
Neural fidelity warping for efficient robot morphology design
Neural fidelity warping for efficient robot morphology design
Sha Hu
Zeshi Yang
Greg Mori
55
4
0
08 Dec 2020
HEBO Pushing The Limits of Sample-Efficient Hyperparameter Optimisation
HEBO Pushing The Limits of Sample-Efficient Hyperparameter Optimisation
Alexander I. Cowen-Rivers
Wenlong Lyu
Rasul Tutunov
Zhi Wang
Antoine Grosnit
...
A. Maraval
Hao Jianye
Jun Wang
Jan Peters
H. Ammar
27
74
0
07 Dec 2020
Scalable Constrained Bayesian Optimization
Scalable Constrained Bayesian Optimization
David Eriksson
Matthias Poloczek
33
95
0
20 Feb 2020
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
Maximilian Balandat
Brian Karrer
Daniel R. Jiang
Sam Daulton
Benjamin Letham
A. Wilson
E. Bakshy
32
93
0
14 Oct 2019
Scalable Global Optimization via Local Bayesian Optimization
Scalable Global Optimization via Local Bayesian Optimization
Samyam Rajbhandari
Michael Pearce
Jacob R. Gardner
Ryan D. Turner
Matthias Poloczek
48
450
0
03 Oct 2019
Learning search spaces for Bayesian optimization: Another view of
  hyperparameter transfer learning
Learning search spaces for Bayesian optimization: Another view of hyperparameter transfer learning
Valerio Perrone
Huibin Shen
Matthias Seeger
Cédric Archambeau
Rodolphe Jenatton
27
96
0
27 Sep 2019
Reducing The Search Space For Hyperparameter Optimization Using Group
  Sparsity
Reducing The Search Space For Hyperparameter Optimization Using Group Sparsity
Minsu Cho
C. Hegde
19
11
0
24 Apr 2019
An Ensemble of Epoch-wise Empirical Bayes for Few-shot Learning
An Ensemble of Epoch-wise Empirical Bayes for Few-shot Learning
Yaoyao Liu
Bernt Schiele
Qianru Sun
BDL
38
128
0
17 Apr 2019
Fast Efficient Hyperparameter Tuning for Policy Gradients
Fast Efficient Hyperparameter Tuning for Policy Gradients
Supratik Paul
Vitaly Kurin
Shimon Whiteson
22
32
0
18 Feb 2019
Multi-level CNN for lung nodule classification with Gaussian Process
  assisted hyperparameter optimization
Multi-level CNN for lung nodule classification with Gaussian Process assisted hyperparameter optimization
Miao Zhang
Huiqi Li
Juan Lyu
S. Ling
Steven W. Su
AI4CE
17
11
0
02 Jan 2019
Neural Non-Stationary Spectral Kernel
Neural Non-Stationary Spectral Kernel
Sami Remes
Markus Heinonen
Samuel Kaski
BDL
16
9
0
27 Nov 2018
A Tutorial on Bayesian Optimization
A Tutorial on Bayesian Optimization
P. Frazier
GP
15
1,737
0
08 Jul 2018
A unified strategy for implementing curiosity and empowerment driven
  reinforcement learning
A unified strategy for implementing curiosity and empowerment driven reinforcement learning
Ildefons Magrans de Abril
Ryota Kanai
17
18
0
18 Jun 2018
BOCK : Bayesian Optimization with Cylindrical Kernels
BOCK : Bayesian Optimization with Cylindrical Kernels
Changyong Oh
E. Gavves
Max Welling
23
135
0
05 Jun 2018
Bayesian Alignments of Warped Multi-Output Gaussian Processes
Bayesian Alignments of Warped Multi-Output Gaussian Processes
Markus Kaiser
Clemens Otte
Thomas Runkler
Carl Henrik Ek
24
19
0
08 Oct 2017
Hyperparameter Optimization: A Spectral Approach
Hyperparameter Optimization: A Spectral Approach
Elad Hazan
Adam R. Klivans
Yang Yuan
27
118
0
02 Jun 2017
Practical heteroskedastic Gaussian process modeling for large simulation
  experiments
Practical heteroskedastic Gaussian process modeling for large simulation experiments
M. Binois
R. Gramacy
M. Ludkovski
30
181
0
17 Nov 2016
Learning to Learn without Gradient Descent by Gradient Descent
Learning to Learn without Gradient Descent by Gradient Descent
Yutian Chen
Matthew W. Hoffman
Sergio Gomez Colmenarejo
Misha Denil
Timothy Lillicrap
Matt Botvinick
Nando de Freitas
21
42
0
11 Nov 2016
Differentially Private Gaussian Processes
Differentially Private Gaussian Processes
M. Smith
Max Zwiessele
Neil D. Lawrence
13
15
0
02 Jun 2016
Fast Bayesian Optimization of Machine Learning Hyperparameters on Large
  Datasets
Fast Bayesian Optimization of Machine Learning Hyperparameters on Large Datasets
Aaron Klein
Stefan Falkner
Simon Bartels
Philipp Hennig
Frank Hutter
AI4CE
35
545
0
23 May 2016
Online Optimization of Smoothed Piecewise Constant Functions
Online Optimization of Smoothed Piecewise Constant Functions
Vincent Cohen-Addad
Varun Kanade
17
25
0
07 Apr 2016
Non-Stationary Gaussian Process Regression with Hamiltonian Monte Carlo
Non-Stationary Gaussian Process Regression with Hamiltonian Monte Carlo
Markus Heinonen
Henrik Mannerstrom
Juho Rousu
Samuel Kaski
Harri Lähdesmäki
25
102
0
18 Aug 2015
Non-stochastic Best Arm Identification and Hyperparameter Optimization
Non-stochastic Best Arm Identification and Hyperparameter Optimization
Kevin G. Jamieson
Ameet Talwalkar
47
565
0
27 Feb 2015
Show, Attend and Tell: Neural Image Caption Generation with Visual
  Attention
Show, Attend and Tell: Neural Image Caption Generation with Visual Attention
Ke Xu
Jimmy Ba
Ryan Kiros
Kyunghyun Cho
Aaron Courville
Ruslan Salakhutdinov
R. Zemel
Yoshua Bengio
DiffM
121
10,008
0
10 Feb 2015
Multi-task Neural Networks for QSAR Predictions
Multi-task Neural Networks for QSAR Predictions
George E. Dahl
Navdeep Jaitly
Ruslan Salakhutdinov
62
277
0
04 Jun 2014
Manifold Gaussian Processes for Regression
Manifold Gaussian Processes for Regression
Roberto Calandra
Jan Peters
C. Rasmussen
M. Deisenroth
92
271
0
24 Feb 2014
12
Next