ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1401.5508
  4. Cited By
Hilbert Space Methods for Reduced-Rank Gaussian Process Regression

Hilbert Space Methods for Reduced-Rank Gaussian Process Regression

21 January 2014
Arno Solin
Simo Särkkä
ArXivPDFHTML

Papers citing "Hilbert Space Methods for Reduced-Rank Gaussian Process Regression"

32 / 32 papers shown
Title
Geometry-aware Active Learning of Spatiotemporal Dynamic Systems
Geometry-aware Active Learning of Spatiotemporal Dynamic Systems
Xizhuo
Zhang
AI4CE
24
0
0
26 Apr 2025
Constrained Gaussian Process Motion Planning via Stein Variational Newton Inference
Constrained Gaussian Process Motion Planning via Stein Variational Newton Inference
Jiayun Li
Kay Pompetzki
An T. Le
Haolei Tong
Jan Peters
Georgia Chalvatzaki
33
0
0
07 Apr 2025
Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems
Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems
Zhidi Lin
Ying Li
Feng Yin
Juan Maroñas
Alexandre Thiéry
49
0
0
24 Mar 2025
When the whole is greater than the sum of its parts: Scaling black-box inference to large data settings through divide-and-conquer
When the whole is greater than the sum of its parts: Scaling black-box inference to large data settings through divide-and-conquer
Emily C. Hector
Amanda Lenzi
36
1
0
31 Dec 2024
Optimizing Posterior Samples for Bayesian Optimization via Rootfinding
Optimizing Posterior Samples for Bayesian Optimization via Rootfinding
Taiwo A. Adebiyi
Bach Do
Ruda Zhang
89
2
0
29 Oct 2024
Efficient Patient Fine-Tuned Seizure Detection with a Tensor Kernel
  Machine
Efficient Patient Fine-Tuned Seizure Detection with a Tensor Kernel Machine
S. J. D. Rooij
Frederiek Wesel
B. Hunyadi
AAML
21
0
0
01 Aug 2024
Dynamic Online Ensembles of Basis Expansions
Dynamic Online Ensembles of Basis Expansions
Daniel Waxman
Petar M. Djurić
27
3
0
02 May 2024
Large-scale magnetic field maps using structured kernel interpolation
  for Gaussian process regression
Large-scale magnetic field maps using structured kernel interpolation for Gaussian process regression
Clara Menzen
Marnix Fetter
Manon Kok
10
1
0
25 Oct 2023
Learning battery model parameter dynamics from data with recursive
  Gaussian process regression
Learning battery model parameter dynamics from data with recursive Gaussian process regression
A. Aitio
Dominik Jöst
D. Sauer
David A. Howey
9
5
0
26 Apr 2023
Learning-Based Optimal Control with Performance Guarantees for Unknown
  Systems with Latent States
Learning-Based Optimal Control with Performance Guarantees for Unknown Systems with Latent States
Robert Lefringhausen
Supitsana Srithasan
Armin Lederer
Sandra Hirche
15
4
0
31 Mar 2023
Generalised Linear Mixed Model Specification, Analysis, Fitting, and
  Optimal Design in R with the glmmr Packages
Generalised Linear Mixed Model Specification, Analysis, Fitting, and Optimal Design in R with the glmmr Packages
S. Watson
13
3
0
22 Mar 2023
Gaussian Process-Gated Hierarchical Mixtures of Experts
Gaussian Process-Gated Hierarchical Mixtures of Experts
Yuhao Liu
Marzieh Ajirak
P. Djuric
MoE
16
1
0
09 Feb 2023
Spatially scalable recursive estimation of Gaussian process terrain maps
  using local basis functions
Spatially scalable recursive estimation of Gaussian process terrain maps using local basis functions
Frida Viset
R. Helmons
Manon Kok
21
1
0
17 Oct 2022
Adjoint-aided inference of Gaussian process driven differential
  equations
Adjoint-aided inference of Gaussian process driven differential equations
Paterne Gahungu
Christopher W. Lanyon
Mauricio A. Alvarez
Engineer Bainomugisha
M. Smith
Richard D. Wilkinson
9
5
0
09 Feb 2022
Linear Time Kernel Matrix Approximation via Hyperspherical Harmonics
Linear Time Kernel Matrix Approximation via Hyperspherical Harmonics
J. Ryan
Anil Damle
14
0
0
08 Feb 2022
When are Iterative Gaussian Processes Reliably Accurate?
When are Iterative Gaussian Processes Reliably Accurate?
Wesley J. Maddox
Sanyam Kapoor
A. Wilson
11
10
0
31 Dec 2021
Geometry-Aware Hierarchical Bayesian Learning on Manifolds
Geometry-Aware Hierarchical Bayesian Learning on Manifolds
Yonghui Fan
Yalin Wang
11
2
0
30 Oct 2021
GaussED: A Probabilistic Programming Language for Sequential
  Experimental Design
GaussED: A Probabilistic Programming Language for Sequential Experimental Design
Matthew A. Fisher
Onur Teymur
Chris J. Oates
24
1
0
15 Oct 2021
Efficient Fourier representations of families of Gaussian processes
Efficient Fourier representations of families of Gaussian processes
P. Greengard
31
3
0
28 Sep 2021
Efficient reduced-rank methods for Gaussian processes with eigenfunction
  expansions
Efficient reduced-rank methods for Gaussian processes with eigenfunction expansions
P. Greengard
M. O’Neil
20
10
0
12 Aug 2021
Pathfinder: Parallel quasi-Newton variational inference
Pathfinder: Parallel quasi-Newton variational inference
Lu Zhang
Bob Carpenter
A. Gelman
Aki Vehtari
41
40
0
09 Aug 2021
Pathwise Conditioning of Gaussian Processes
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
11
57
0
08 Nov 2020
Matérn Gaussian Processes on Graphs
Matérn Gaussian Processes on Graphs
Viacheslav Borovitskiy
I. Azangulov
Alexander Terenin
P. Mostowsky
M. Deisenroth
N. Durrande
13
78
0
29 Oct 2020
Sparse Gaussian Processes with Spherical Harmonic Features
Sparse Gaussian Processes with Spherical Harmonic Features
Vincent Dutordoir
N. Durrande
J. Hensman
11
54
0
30 Jun 2020
Practical Hilbert space approximate Bayesian Gaussian processes for
  probabilistic programming
Practical Hilbert space approximate Bayesian Gaussian processes for probabilistic programming
Gabriel Riutort-Mayol
Paul-Christian Burkner
Michael R. Andersen
Arno Solin
Aki Vehtari
13
68
0
23 Apr 2020
Linearly Constrained Neural Networks
Linearly Constrained Neural Networks
J. Hendriks
Carl Jidling
A. Wills
Thomas B. Schon
6
33
0
05 Feb 2020
Fast Kernel Approximations for Latent Force Models and Convolved
  Multiple-Output Gaussian processes
Fast Kernel Approximations for Latent Force Models and Convolved Multiple-Output Gaussian processes
Cristian Guarnizo Lemus
Mauricio A. Alvarez
11
15
0
18 May 2018
Scalable Magnetic Field SLAM in 3D Using Gaussian Process Maps
Scalable Magnetic Field SLAM in 3D Using Gaussian Process Maps
Manon Kok
Arno Solin
9
67
0
05 Apr 2018
Recursive nonlinear-system identification using latent variables
Recursive nonlinear-system identification using latent variables
Per Mattsson
Dave Zachariah
Petre Stoica
13
30
0
14 Jun 2016
Sharp analysis of low-rank kernel matrix approximations
Sharp analysis of low-rank kernel matrix approximations
Francis R. Bach
75
278
0
09 Aug 2012
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
170
3,260
0
09 Jun 2012
A Framework for Evaluating Approximation Methods for Gaussian Process
  Regression
A Framework for Evaluating Approximation Methods for Gaussian Process Regression
Krzysztof Chalupka
Christopher K. I. Williams
Iain Murray
GP
63
169
0
29 May 2012
1