Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1401.5508
Cited By
Hilbert Space Methods for Reduced-Rank Gaussian Process Regression
21 January 2014
Arno Solin
Simo Särkkä
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Hilbert Space Methods for Reduced-Rank Gaussian Process Regression"
32 / 32 papers shown
Title
Geometry-aware Active Learning of Spatiotemporal Dynamic Systems
Xizhuo
Zhang
AI4CE
24
0
0
26 Apr 2025
Constrained Gaussian Process Motion Planning via Stein Variational Newton Inference
Jiayun Li
Kay Pompetzki
An T. Le
Haolei Tong
Jan Peters
Georgia Chalvatzaki
33
0
0
07 Apr 2025
Efficient Transformed Gaussian Process State-Space Models for Non-Stationary High-Dimensional Dynamical Systems
Zhidi Lin
Ying Li
Feng Yin
Juan Maroñas
Alexandre Thiéry
49
0
0
24 Mar 2025
When the whole is greater than the sum of its parts: Scaling black-box inference to large data settings through divide-and-conquer
Emily C. Hector
Amanda Lenzi
36
1
0
31 Dec 2024
Optimizing Posterior Samples for Bayesian Optimization via Rootfinding
Taiwo A. Adebiyi
Bach Do
Ruda Zhang
89
2
0
29 Oct 2024
Efficient Patient Fine-Tuned Seizure Detection with a Tensor Kernel Machine
S. J. D. Rooij
Frederiek Wesel
B. Hunyadi
AAML
21
0
0
01 Aug 2024
Dynamic Online Ensembles of Basis Expansions
Daniel Waxman
Petar M. Djurić
27
3
0
02 May 2024
Large-scale magnetic field maps using structured kernel interpolation for Gaussian process regression
Clara Menzen
Marnix Fetter
Manon Kok
10
1
0
25 Oct 2023
Learning battery model parameter dynamics from data with recursive Gaussian process regression
A. Aitio
Dominik Jöst
D. Sauer
David A. Howey
9
5
0
26 Apr 2023
Learning-Based Optimal Control with Performance Guarantees for Unknown Systems with Latent States
Robert Lefringhausen
Supitsana Srithasan
Armin Lederer
Sandra Hirche
15
4
0
31 Mar 2023
Generalised Linear Mixed Model Specification, Analysis, Fitting, and Optimal Design in R with the glmmr Packages
S. Watson
13
3
0
22 Mar 2023
Gaussian Process-Gated Hierarchical Mixtures of Experts
Yuhao Liu
Marzieh Ajirak
P. Djuric
MoE
16
1
0
09 Feb 2023
Spatially scalable recursive estimation of Gaussian process terrain maps using local basis functions
Frida Viset
R. Helmons
Manon Kok
21
1
0
17 Oct 2022
Adjoint-aided inference of Gaussian process driven differential equations
Paterne Gahungu
Christopher W. Lanyon
Mauricio A. Alvarez
Engineer Bainomugisha
M. Smith
Richard D. Wilkinson
9
5
0
09 Feb 2022
Linear Time Kernel Matrix Approximation via Hyperspherical Harmonics
J. Ryan
Anil Damle
14
0
0
08 Feb 2022
When are Iterative Gaussian Processes Reliably Accurate?
Wesley J. Maddox
Sanyam Kapoor
A. Wilson
11
10
0
31 Dec 2021
Geometry-Aware Hierarchical Bayesian Learning on Manifolds
Yonghui Fan
Yalin Wang
11
2
0
30 Oct 2021
GaussED: A Probabilistic Programming Language for Sequential Experimental Design
Matthew A. Fisher
Onur Teymur
Chris J. Oates
24
1
0
15 Oct 2021
Efficient Fourier representations of families of Gaussian processes
P. Greengard
31
3
0
28 Sep 2021
Efficient reduced-rank methods for Gaussian processes with eigenfunction expansions
P. Greengard
M. O’Neil
20
10
0
12 Aug 2021
Pathfinder: Parallel quasi-Newton variational inference
Lu Zhang
Bob Carpenter
A. Gelman
Aki Vehtari
41
40
0
09 Aug 2021
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
11
57
0
08 Nov 2020
Matérn Gaussian Processes on Graphs
Viacheslav Borovitskiy
I. Azangulov
Alexander Terenin
P. Mostowsky
M. Deisenroth
N. Durrande
13
78
0
29 Oct 2020
Sparse Gaussian Processes with Spherical Harmonic Features
Vincent Dutordoir
N. Durrande
J. Hensman
11
54
0
30 Jun 2020
Practical Hilbert space approximate Bayesian Gaussian processes for probabilistic programming
Gabriel Riutort-Mayol
Paul-Christian Burkner
Michael R. Andersen
Arno Solin
Aki Vehtari
13
68
0
23 Apr 2020
Linearly Constrained Neural Networks
J. Hendriks
Carl Jidling
A. Wills
Thomas B. Schon
6
33
0
05 Feb 2020
Fast Kernel Approximations for Latent Force Models and Convolved Multiple-Output Gaussian processes
Cristian Guarnizo Lemus
Mauricio A. Alvarez
11
15
0
18 May 2018
Scalable Magnetic Field SLAM in 3D Using Gaussian Process Maps
Manon Kok
Arno Solin
9
67
0
05 Apr 2018
Recursive nonlinear-system identification using latent variables
Per Mattsson
Dave Zachariah
Petre Stoica
13
30
0
14 Jun 2016
Sharp analysis of low-rank kernel matrix approximations
Francis R. Bach
75
278
0
09 Aug 2012
MCMC using Hamiltonian dynamics
Radford M. Neal
170
3,260
0
09 Jun 2012
A Framework for Evaluating Approximation Methods for Gaussian Process Regression
Krzysztof Chalupka
Christopher K. I. Williams
Iain Murray
GP
63
169
0
29 May 2012
1