138
77
v1v2 (latest)

Tractability through Exchangeability: A New Perspective on Efficient Probabilistic Inference

Abstract

Exchangeability is a central notion in statistics and probability theory. The assumption that an infinite sequence of data points is exchangeable is at the core of Bayesian statistics. However, finite exchangeability as a statistical property that renders probabilistic inference tractable is less well-understood. We develop a theory of finite exchangeability and its relation to tractable probabilistic inference. The theory is complementary to that of independence and conditional independence. We show that tractable inference in probabilistic models with high treewidth and millions of variables can be understood using the notion of finite (partial) exchangeability. We also show that existing lifted inference algorithms implicitly utilize a combination of conditional independence and partial exchangeability.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.