ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1401.0604
  4. Cited By
Particle Gibbs with Ancestor Sampling

Particle Gibbs with Ancestor Sampling

3 January 2014
Fredrik Lindsten
Michael I. Jordan
Thomas B. Schon
ArXivPDFHTML

Papers citing "Particle Gibbs with Ancestor Sampling"

10 / 10 papers shown
Title
Auxiliary MCMC and particle Gibbs samplers for parallelisable inference in latent dynamical systems
Auxiliary MCMC and particle Gibbs samplers for parallelisable inference in latent dynamical systems
Adrien Corenflos
Simo Särkkä
53
0
0
01 Mar 2023
Decomposition Sampling applied to Parallelization of Metropolis-Hastings
Decomposition Sampling applied to Parallelization of Metropolis-Hastings
J. Hallgren
T. Koski
51
3
0
12 Feb 2014
Path storage in the particle filter
Path storage in the particle filter
Pierre E. Jacob
Lawrence M. Murray
Sylvain Rubenthaler
88
62
0
11 Jul 2013
Bayesian Inference and Learning in Gaussian Process State-Space Models
  with Particle MCMC
Bayesian Inference and Learning in Gaussian Process State-Space Models with Particle MCMC
R. Frigola
Fredrik Lindsten
Thomas B. Schon
C. Rasmussen
101
149
0
12 Jun 2013
On particle Gibbs sampling
On particle Gibbs sampling
Nicolas Chopin
Sumeetpal S. Singh
88
103
0
06 Apr 2013
Ancestor Sampling for Particle Gibbs
Ancestor Sampling for Particle Gibbs
Fredrik Lindsten
Michael I. Jordan
Thomas B. Schon
85
61
0
25 Oct 2012
On Disturbance State-Space Models and the Particle Marginal
  Metropolis-Hastings Sampler
On Disturbance State-Space Models and the Particle Marginal Metropolis-Hastings Sampler
Lawrence M. Murray
E. Jones
J. Parslow
76
31
0
28 Feb 2012
Markovian stochastic approximation with expanding projections
Markovian stochastic approximation with expanding projections
Christophe Andrieu
M. Vihola
74
27
0
23 Nov 2011
Efficient Bayesian Inference for Switching State-Space Models using
  Discrete Particle Markov Chain Monte Carlo Methods
Efficient Bayesian Inference for Switching State-Space Models using Discrete Particle Markov Chain Monte Carlo Methods
N. Whiteley
Christophe Andrieu
Arnaud Doucet
93
77
0
10 Nov 2010
Particle Filters for Partially Observed Diffusions
Particle Filters for Partially Observed Diffusions
Paul Fearnhead
O. Papaspiliopoulos
Gareth O. Roberts
236
165
0
23 Oct 2007
1