ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1312.5799
  4. Cited By
Accelerated, Parallel and Proximal Coordinate Descent

Accelerated, Parallel and Proximal Coordinate Descent

20 December 2013
Olivier Fercoq
Peter Richtárik
ArXivPDFHTML

Papers citing "Accelerated, Parallel and Proximal Coordinate Descent"

42 / 42 papers shown
Title
Randomized Block-Coordinate Optimistic Gradient Algorithms for Root-Finding Problems
Randomized Block-Coordinate Optimistic Gradient Algorithms for Root-Finding Problems
Quoc Tran-Dinh
Yang Luo
97
6
0
28 Jan 2025
An Asynchronous Decentralized Algorithm for Wasserstein Barycenter
  Problem
An Asynchronous Decentralized Algorithm for Wasserstein Barycenter Problem
Chao Zhang
Hui Qian
Jiahao Xie
12
1
0
23 Apr 2023
Differentially Private Coordinate Descent for Composite Empirical Risk
  Minimization
Differentially Private Coordinate Descent for Composite Empirical Risk Minimization
Paul Mangold
A. Bellet
Joseph Salmon
Marc Tommasi
32
14
0
22 Oct 2021
Distributed stochastic optimization with large delays
Distributed stochastic optimization with large delays
Zhengyuan Zhou
P. Mertikopoulos
Nicholas Bambos
Peter Glynn
Yinyu Ye
28
9
0
06 Jul 2021
Cyclic Coordinate Dual Averaging with Extrapolation
Cyclic Coordinate Dual Averaging with Extrapolation
Chaobing Song
Jelena Diakonikolas
27
6
0
26 Feb 2021
First-Order Methods for Convex Optimization
First-Order Methods for Convex Optimization
Pavel Dvurechensky
Mathias Staudigl
Shimrit Shtern
ODL
31
25
0
04 Jan 2021
Optimal Client Sampling for Federated Learning
Optimal Client Sampling for Federated Learning
Wenlin Chen
Samuel Horváth
Peter Richtárik
FedML
42
191
0
26 Oct 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for
  Data and Parameters
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
34
0
0
26 Aug 2020
Multi-subject MEG/EEG source imaging with sparse multi-task regression
Multi-subject MEG/EEG source imaging with sparse multi-task regression
H. Janati
Yonas T. Tadesse
B. Thirion
Marco Cuturi
Alexandre Gramfort
27
32
0
03 Oct 2019
Clustering by Orthogonal NMF Model and Non-Convex Penalty Optimization
Clustering by Orthogonal NMF Model and Non-Convex Penalty Optimization
Shuai Wang
Tsung-Hui Chang
Ying Cui
J. Pang
6
29
0
03 Jun 2019
Group level MEG/EEG source imaging via optimal transport: minimum
  Wasserstein estimates
Group level MEG/EEG source imaging via optimal transport: minimum Wasserstein estimates
H. Janati
Thomas Bazeille
B. Thirion
Marco Cuturi
Alexandre Gramfort
OT
24
10
0
13 Feb 2019
99% of Distributed Optimization is a Waste of Time: The Issue and How to
  Fix it
99% of Distributed Optimization is a Waste of Time: The Issue and How to Fix it
Konstantin Mishchenko
Filip Hanzely
Peter Richtárik
16
13
0
27 Jan 2019
Accelerated Decentralized Optimization with Local Updates for Smooth and
  Strongly Convex Objectives
Accelerated Decentralized Optimization with Local Updates for Smooth and Strongly Convex Objectives
Hadrien Hendrikx
Francis R. Bach
Laurent Massoulié
13
42
0
05 Oct 2018
SEGA: Variance Reduction via Gradient Sketching
SEGA: Variance Reduction via Gradient Sketching
Filip Hanzely
Konstantin Mishchenko
Peter Richtárik
25
71
0
09 Sep 2018
Accelerating Nonnegative Matrix Factorization Algorithms using
  Extrapolation
Accelerating Nonnegative Matrix Factorization Algorithms using Extrapolation
A. Ang
Nicolas Gillis
19
45
0
17 May 2018
Momentum and Stochastic Momentum for Stochastic Gradient, Newton,
  Proximal Point and Subspace Descent Methods
Momentum and Stochastic Momentum for Stochastic Gradient, Newton, Proximal Point and Subspace Descent Methods
Nicolas Loizou
Peter Richtárik
19
200
0
27 Dec 2017
Stochastic Primal-Dual Hybrid Gradient Algorithm with Arbitrary Sampling
  and Imaging Applications
Stochastic Primal-Dual Hybrid Gradient Algorithm with Arbitrary Sampling and Imaging Applications
A. Chambolle
Matthias Joachim Ehrhardt
Peter Richtárik
Carola-Bibiane Schönlieb
38
184
0
15 Jun 2017
Decomposable Submodular Function Minimization: Discrete and Continuous
Decomposable Submodular Function Minimization: Discrete and Continuous
Alina Ene
Huy Le Nguyen
László A. Végh
29
25
0
06 Mar 2017
Analysis and Optimization of Loss Functions for Multiclass, Top-k, and
  Multilabel Classification
Analysis and Optimization of Loss Functions for Multiclass, Top-k, and Multilabel Classification
Maksim Lapin
Matthias Hein
Bernt Schiele
34
99
0
12 Dec 2016
Federated Optimization: Distributed Machine Learning for On-Device
  Intelligence
Federated Optimization: Distributed Machine Learning for On-Device Intelligence
Jakub Konecný
H. B. McMahan
Daniel Ramage
Peter Richtárik
FedML
66
1,878
0
08 Oct 2016
A Primer on Coordinate Descent Algorithms
A Primer on Coordinate Descent Algorithms
Hao-Jun Michael Shi
Shenyinying Tu
Yangyang Xu
W. Yin
37
90
0
30 Sep 2016
Randomized block proximal damped Newton method for composite
  self-concordant minimization
Randomized block proximal damped Newton method for composite self-concordant minimization
Zhaosong Lu
14
11
0
01 Jul 2016
Accelerated Randomized Mirror Descent Algorithms For Composite
  Non-strongly Convex Optimization
Accelerated Randomized Mirror Descent Algorithms For Composite Non-strongly Convex Optimization
L. Hien
Cuong V Nguyen
Huan Xu
Canyi Lu
Jiashi Feng
25
19
0
23 May 2016
Katyusha: The First Direct Acceleration of Stochastic Gradient Methods
Katyusha: The First Direct Acceleration of Stochastic Gradient Methods
Zeyuan Allen-Zhu
ODL
15
577
0
18 Mar 2016
$\ell_1$ Adaptive Trend Filter via Fast Coordinate Descent
ℓ1\ell_1ℓ1​ Adaptive Trend Filter via Fast Coordinate Descent
Mario Souto
J. Garcia
G. Amaral
24
5
0
11 Mar 2016
Strategies and Principles of Distributed Machine Learning on Big Data
Strategies and Principles of Distributed Machine Learning on Big Data
Eric Xing
Qirong Ho
P. Xie
Wei-Ming Dai
AI4CE
24
153
0
31 Dec 2015
Even Faster Accelerated Coordinate Descent Using Non-Uniform Sampling
Even Faster Accelerated Coordinate Descent Using Non-Uniform Sampling
Zeyuan Allen-Zhu
Zheng Qu
Peter Richtárik
Yang Yuan
44
172
0
30 Dec 2015
L1-Regularized Distributed Optimization: A Communication-Efficient
  Primal-Dual Framework
L1-Regularized Distributed Optimization: A Communication-Efficient Primal-Dual Framework
Virginia Smith
Simone Forte
Michael I. Jordan
Martin Jaggi
28
28
0
13 Dec 2015
Kalman-based Stochastic Gradient Method with Stop Condition and
  Insensitivity to Conditioning
Kalman-based Stochastic Gradient Method with Stop Condition and Insensitivity to Conditioning
V. Patel
23
35
0
03 Dec 2015
MAGMA: Multi-level accelerated gradient mirror descent algorithm for
  large-scale convex composite minimization
MAGMA: Multi-level accelerated gradient mirror descent algorithm for large-scale convex composite minimization
Vahan Hovhannisyan
P. Parpas
S. Zafeiriou
17
27
0
18 Sep 2015
Asynchronous Parallel Stochastic Gradient for Nonconvex Optimization
Asynchronous Parallel Stochastic Gradient for Nonconvex Optimization
Xiangru Lian
Yijun Huang
Y. Li
Ji Liu
36
500
0
27 Jun 2015
Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting
Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting
Jakub Konecný
Jie Liu
Peter Richtárik
Martin Takáč
ODL
30
273
0
16 Apr 2015
Stochastic Dual Coordinate Ascent with Adaptive Probabilities
Stochastic Dual Coordinate Ascent with Adaptive Probabilities
Dominik Csiba
Zheng Qu
Peter Richtárik
ODL
61
97
0
27 Feb 2015
Adding vs. Averaging in Distributed Primal-Dual Optimization
Adding vs. Averaging in Distributed Primal-Dual Optimization
Chenxin Ma
Virginia Smith
Martin Jaggi
Michael I. Jordan
Peter Richtárik
Martin Takáč
FedML
29
176
0
12 Feb 2015
Random Coordinate Descent Methods for Minimizing Decomposable Submodular
  Functions
Random Coordinate Descent Methods for Minimizing Decomposable Submodular Functions
Alina Ene
Huy Le Nguyen
37
43
0
09 Feb 2015
Coordinate Descent with Arbitrary Sampling II: Expected Separable
  Overapproximation
Coordinate Descent with Arbitrary Sampling II: Expected Separable Overapproximation
Zheng Qu
Peter Richtárik
41
83
0
27 Dec 2014
Accelerated Parallel Optimization Methods for Large Scale Machine
  Learning
Accelerated Parallel Optimization Methods for Large Scale Machine Learning
Haipeng Luo
P. Haffner
Jean-François Paiement
26
7
0
25 Nov 2014
Randomized Dual Coordinate Ascent with Arbitrary Sampling
Randomized Dual Coordinate Ascent with Arbitrary Sampling
Zheng Qu
Peter Richtárik
Tong Zhang
38
58
0
21 Nov 2014
Large-scale randomized-coordinate descent methods with non-separable
  linear constraints
Large-scale randomized-coordinate descent methods with non-separable linear constraints
Sashank J. Reddi
Ahmed S. Hefny
Carlton Downey
Kumar Avinava Dubey
S. Sra
29
19
0
09 Sep 2014
A Coordinate Descent Primal-Dual Algorithm and Application to
  Distributed Asynchronous Optimization
A Coordinate Descent Primal-Dual Algorithm and Application to Distributed Asynchronous Optimization
Pascal Bianchi
W. Hachem
F. Iutzeler
62
57
0
03 Jul 2014
Distributed Coordinate Descent Method for Learning with Big Data
Distributed Coordinate Descent Method for Learning with Big Data
Peter Richtárik
Martin Takáč
50
253
0
08 Oct 2013
Accelerated Proximal Stochastic Dual Coordinate Ascent for Regularized
  Loss Minimization
Accelerated Proximal Stochastic Dual Coordinate Ascent for Regularized Loss Minimization
Shai Shalev-Shwartz
Tong Zhang
ODL
60
462
0
10 Sep 2013
1