Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1312.5799
Cited By
Accelerated, Parallel and Proximal Coordinate Descent
20 December 2013
Olivier Fercoq
Peter Richtárik
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Accelerated, Parallel and Proximal Coordinate Descent"
42 / 42 papers shown
Title
Randomized Block-Coordinate Optimistic Gradient Algorithms for Root-Finding Problems
Quoc Tran-Dinh
Yang Luo
97
6
0
28 Jan 2025
An Asynchronous Decentralized Algorithm for Wasserstein Barycenter Problem
Chao Zhang
Hui Qian
Jiahao Xie
12
1
0
23 Apr 2023
Differentially Private Coordinate Descent for Composite Empirical Risk Minimization
Paul Mangold
A. Bellet
Joseph Salmon
Marc Tommasi
32
14
0
22 Oct 2021
Distributed stochastic optimization with large delays
Zhengyuan Zhou
P. Mertikopoulos
Nicholas Bambos
Peter Glynn
Yinyu Ye
28
9
0
06 Jul 2021
Cyclic Coordinate Dual Averaging with Extrapolation
Chaobing Song
Jelena Diakonikolas
27
6
0
26 Feb 2021
First-Order Methods for Convex Optimization
Pavel Dvurechensky
Mathias Staudigl
Shimrit Shtern
ODL
31
25
0
04 Jan 2021
Optimal Client Sampling for Federated Learning
Wenlin Chen
Samuel Horváth
Peter Richtárik
FedML
42
191
0
26 Oct 2020
Optimization for Supervised Machine Learning: Randomized Algorithms for Data and Parameters
Filip Hanzely
34
0
0
26 Aug 2020
Multi-subject MEG/EEG source imaging with sparse multi-task regression
H. Janati
Yonas T. Tadesse
B. Thirion
Marco Cuturi
Alexandre Gramfort
27
32
0
03 Oct 2019
Clustering by Orthogonal NMF Model and Non-Convex Penalty Optimization
Shuai Wang
Tsung-Hui Chang
Ying Cui
J. Pang
6
29
0
03 Jun 2019
Group level MEG/EEG source imaging via optimal transport: minimum Wasserstein estimates
H. Janati
Thomas Bazeille
B. Thirion
Marco Cuturi
Alexandre Gramfort
OT
24
10
0
13 Feb 2019
99% of Distributed Optimization is a Waste of Time: The Issue and How to Fix it
Konstantin Mishchenko
Filip Hanzely
Peter Richtárik
16
13
0
27 Jan 2019
Accelerated Decentralized Optimization with Local Updates for Smooth and Strongly Convex Objectives
Hadrien Hendrikx
Francis R. Bach
Laurent Massoulié
13
42
0
05 Oct 2018
SEGA: Variance Reduction via Gradient Sketching
Filip Hanzely
Konstantin Mishchenko
Peter Richtárik
25
71
0
09 Sep 2018
Accelerating Nonnegative Matrix Factorization Algorithms using Extrapolation
A. Ang
Nicolas Gillis
19
45
0
17 May 2018
Momentum and Stochastic Momentum for Stochastic Gradient, Newton, Proximal Point and Subspace Descent Methods
Nicolas Loizou
Peter Richtárik
19
200
0
27 Dec 2017
Stochastic Primal-Dual Hybrid Gradient Algorithm with Arbitrary Sampling and Imaging Applications
A. Chambolle
Matthias Joachim Ehrhardt
Peter Richtárik
Carola-Bibiane Schönlieb
38
184
0
15 Jun 2017
Decomposable Submodular Function Minimization: Discrete and Continuous
Alina Ene
Huy Le Nguyen
László A. Végh
29
25
0
06 Mar 2017
Analysis and Optimization of Loss Functions for Multiclass, Top-k, and Multilabel Classification
Maksim Lapin
Matthias Hein
Bernt Schiele
34
99
0
12 Dec 2016
Federated Optimization: Distributed Machine Learning for On-Device Intelligence
Jakub Konecný
H. B. McMahan
Daniel Ramage
Peter Richtárik
FedML
66
1,878
0
08 Oct 2016
A Primer on Coordinate Descent Algorithms
Hao-Jun Michael Shi
Shenyinying Tu
Yangyang Xu
W. Yin
37
90
0
30 Sep 2016
Randomized block proximal damped Newton method for composite self-concordant minimization
Zhaosong Lu
14
11
0
01 Jul 2016
Accelerated Randomized Mirror Descent Algorithms For Composite Non-strongly Convex Optimization
L. Hien
Cuong V Nguyen
Huan Xu
Canyi Lu
Jiashi Feng
25
19
0
23 May 2016
Katyusha: The First Direct Acceleration of Stochastic Gradient Methods
Zeyuan Allen-Zhu
ODL
15
577
0
18 Mar 2016
ℓ
1
\ell_1
ℓ
1
Adaptive Trend Filter via Fast Coordinate Descent
Mario Souto
J. Garcia
G. Amaral
24
5
0
11 Mar 2016
Strategies and Principles of Distributed Machine Learning on Big Data
Eric Xing
Qirong Ho
P. Xie
Wei-Ming Dai
AI4CE
24
153
0
31 Dec 2015
Even Faster Accelerated Coordinate Descent Using Non-Uniform Sampling
Zeyuan Allen-Zhu
Zheng Qu
Peter Richtárik
Yang Yuan
44
172
0
30 Dec 2015
L1-Regularized Distributed Optimization: A Communication-Efficient Primal-Dual Framework
Virginia Smith
Simone Forte
Michael I. Jordan
Martin Jaggi
28
28
0
13 Dec 2015
Kalman-based Stochastic Gradient Method with Stop Condition and Insensitivity to Conditioning
V. Patel
23
35
0
03 Dec 2015
MAGMA: Multi-level accelerated gradient mirror descent algorithm for large-scale convex composite minimization
Vahan Hovhannisyan
P. Parpas
S. Zafeiriou
17
27
0
18 Sep 2015
Asynchronous Parallel Stochastic Gradient for Nonconvex Optimization
Xiangru Lian
Yijun Huang
Y. Li
Ji Liu
36
500
0
27 Jun 2015
Mini-Batch Semi-Stochastic Gradient Descent in the Proximal Setting
Jakub Konecný
Jie Liu
Peter Richtárik
Martin Takáč
ODL
30
273
0
16 Apr 2015
Stochastic Dual Coordinate Ascent with Adaptive Probabilities
Dominik Csiba
Zheng Qu
Peter Richtárik
ODL
61
97
0
27 Feb 2015
Adding vs. Averaging in Distributed Primal-Dual Optimization
Chenxin Ma
Virginia Smith
Martin Jaggi
Michael I. Jordan
Peter Richtárik
Martin Takáč
FedML
29
176
0
12 Feb 2015
Random Coordinate Descent Methods for Minimizing Decomposable Submodular Functions
Alina Ene
Huy Le Nguyen
37
43
0
09 Feb 2015
Coordinate Descent with Arbitrary Sampling II: Expected Separable Overapproximation
Zheng Qu
Peter Richtárik
41
83
0
27 Dec 2014
Accelerated Parallel Optimization Methods for Large Scale Machine Learning
Haipeng Luo
P. Haffner
Jean-François Paiement
26
7
0
25 Nov 2014
Randomized Dual Coordinate Ascent with Arbitrary Sampling
Zheng Qu
Peter Richtárik
Tong Zhang
38
58
0
21 Nov 2014
Large-scale randomized-coordinate descent methods with non-separable linear constraints
Sashank J. Reddi
Ahmed S. Hefny
Carlton Downey
Kumar Avinava Dubey
S. Sra
29
19
0
09 Sep 2014
A Coordinate Descent Primal-Dual Algorithm and Application to Distributed Asynchronous Optimization
Pascal Bianchi
W. Hachem
F. Iutzeler
62
57
0
03 Jul 2014
Distributed Coordinate Descent Method for Learning with Big Data
Peter Richtárik
Martin Takáč
50
253
0
08 Oct 2013
Accelerated Proximal Stochastic Dual Coordinate Ascent for Regularized Loss Minimization
Shai Shalev-Shwartz
Tong Zhang
ODL
60
462
0
10 Sep 2013
1