Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1311.0776
Cited By
The Composition Theorem for Differential Privacy
4 November 2013
Peter Kairouz
Sewoong Oh
Pramod Viswanath
Re-assign community
ArXiv
PDF
HTML
Papers citing
"The Composition Theorem for Differential Privacy"
50 / 139 papers shown
Title
Ensure Differential Privacy and Convergence Accuracy in Consensus Tracking and Aggregative Games with Coupling Constraints
Yongqiang Wang
25
3
0
28 Oct 2022
Privately Fine-Tuning Large Language Models with Differential Privacy
R. Behnia
Mohammadreza Ebrahimi
Jason L. Pacheco
B. Padmanabhan
24
44
0
26 Oct 2022
Generalised Likelihood Ratio Testing Adversaries through the Differential Privacy Lens
Georgios Kaissis
Alexander Ziller
Stefan Kolek Martinez de Azagra
Daniel Rueckert
12
0
0
24 Oct 2022
DPIS: An Enhanced Mechanism for Differentially Private SGD with Importance Sampling
Jianxin Wei
Ergute Bao
X. Xiao
Yifan Yang
46
20
0
18 Oct 2022
A General Framework for Auditing Differentially Private Machine Learning
Fred Lu
Joseph Munoz
Maya Fuchs
Tyler LeBlond
Elliott Zaresky-Williams
Edward Raff
Francis Ferraro
Brian Testa
FedML
22
35
0
16 Oct 2022
CANIFE: Crafting Canaries for Empirical Privacy Measurement in Federated Learning
Samuel Maddock
Alexandre Sablayrolles
Pierre Stock
FedML
17
22
0
06 Oct 2022
Federated Boosted Decision Trees with Differential Privacy
Samuel Maddock
Graham Cormode
Tianhao Wang
Carsten Maple
S. Jha
FedML
26
29
0
06 Oct 2022
On the Statistical Complexity of Estimation and Testing under Privacy Constraints
Clément Lalanne
Aurélien Garivier
Rémi Gribonval
27
7
0
05 Oct 2022
Composition of Differential Privacy & Privacy Amplification by Subsampling
Thomas Steinke
61
49
0
02 Oct 2022
On the Impossible Safety of Large AI Models
El-Mahdi El-Mhamdi
Sadegh Farhadkhani
R. Guerraoui
Nirupam Gupta
L. Hoang
Rafael Pinot
Sébastien Rouault
John Stephan
30
31
0
30 Sep 2022
On the Choice of Databases in Differential Privacy Composition
Valentin Hartmann
Vincent Bindschaedler
Robert West
26
0
0
27 Sep 2022
Bayesian and Frequentist Semantics for Common Variations of Differential Privacy: Applications to the 2020 Census
Daniel Kifer
John M. Abowd
Robert Ashmead
Ryan Cumings-Menon
Philip Leclerc
Ashwin Machanavajjhala
William Sexton
Pavel I Zhuravlev
48
26
0
07 Sep 2022
Age-Dependent Differential Privacy
Meng Zhang
Ermin Wei
R. Berry
Jianwei Huang
15
37
0
03 Sep 2022
Differential Privacy on Dynamic Data
Yuan Qiu
K. Yi
26
0
0
03 Sep 2022
The Saddle-Point Accountant for Differential Privacy
Wael Alghamdi
S. Asoodeh
Flavio du Pin Calmon
Juan Felipe Gomez
O. Kosut
Lalitha Sankar
Fei Wei
17
7
0
20 Aug 2022
FedDM: Iterative Distribution Matching for Communication-Efficient Federated Learning
Yuanhao Xiong
Ruochen Wang
Minhao Cheng
Felix X. Yu
Cho-Jui Hsieh
FedML
DD
47
82
0
20 Jul 2022
Faster Privacy Accounting via Evolving Discretization
Badih Ghazi
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
57
14
0
10 Jul 2022
Connect the Dots: Tighter Discrete Approximations of Privacy Loss Distributions
Vadym Doroshenko
Badih Ghazi
Pritish Kamath
Ravi Kumar
Pasin Manurangsi
16
40
0
10 Jul 2022
Measuring Forgetting of Memorized Training Examples
Matthew Jagielski
Om Thakkar
Florian Tramèr
Daphne Ippolito
Katherine Lee
...
Eric Wallace
Shuang Song
Abhradeep Thakurta
Nicolas Papernot
Chiyuan Zhang
TDI
54
102
0
30 Jun 2022
Cactus Mechanisms: Optimal Differential Privacy Mechanisms in the Large-Composition Regime
Wael Alghamdi
S. Asoodeh
Flavio du Pin Calmon
O. Kosut
Lalitha Sankar
Fei Wei
11
8
0
25 Jun 2022
Brownian Noise Reduction: Maximizing Privacy Subject to Accuracy Constraints
Justin Whitehouse
Zhiwei Steven Wu
Aaditya Ramdas
Ryan M. Rogers
11
9
0
15 Jun 2022
Bayesian Estimation of Differential Privacy
Santiago Zanella Béguelin
Lukas Wutschitz
Shruti Tople
A. Salem
Victor Rühle
Andrew J. Paverd
Mohammad Naseri
Boris Köpf
Daniel Jones
17
36
0
10 Jun 2022
Analytical Composition of Differential Privacy via the Edgeworth Accountant
Hua Wang
Sheng-yang Gao
Huanyu Zhang
Milan Shen
Weijie J. Su
FedML
28
21
0
09 Jun 2022
On the Privacy Properties of GAN-generated Samples
Zinan Lin
Vyas Sekar
Giulia Fanti
PICV
21
26
0
03 Jun 2022
Privacy for Free: How does Dataset Condensation Help Privacy?
Tian Dong
Bo-Lu Zhao
Lingjuan Lyu
DD
24
113
0
01 Jun 2022
Noise-Aware Statistical Inference with Differentially Private Synthetic Data
Ossi Raisa
Joonas Jälkö
Samuel Kaski
Antti Honkela
SyDa
40
10
0
28 May 2022
Privacy accounting
ε
\varepsilon
ε
conomics: Improving differential privacy composition via a posteriori bounds
Valentin Hartmann
Vincent Bindschaedler
Alexander Bentkamp
Robert West
21
1
0
06 May 2022
Differentially Private Triangle and 4-Cycle Counting in the Shuffle Model
Jacob Imola
Takao Murakami
Kamalika Chaudhuri
19
23
0
03 May 2022
Adaptive Private-K-Selection with Adaptive K and Application to Multi-label PATE
Yuqing Zhu
Yu-Xiang Wang
35
18
0
30 Mar 2022
Differential Privacy Amplification in Quantum and Quantum-inspired Algorithms
Armando Angrisani
Mina Doosti
E. Kashefi
21
12
0
07 Mar 2022
Continual and Sliding Window Release for Private Empirical Risk Minimization
Lauren Watson
Abhirup Ghosh
Benedek Rozemberczki
Rik Sarkar
16
0
0
07 Mar 2022
Does Label Differential Privacy Prevent Label Inference Attacks?
Ruihan Wu
Jinfu Zhou
Kilian Q. Weinberger
Chuan Guo
23
15
0
25 Feb 2022
Bounding Membership Inference
Anvith Thudi
Ilia Shumailov
Franziska Boenisch
Nicolas Papernot
33
18
0
24 Feb 2022
Debugging Differential Privacy: A Case Study for Privacy Auditing
Florian Tramèr
Andreas Terzis
Thomas Steinke
Shuang Song
Matthew Jagielski
Nicholas Carlini
17
42
0
24 Feb 2022
Differentially Private Speaker Anonymization
Ali Shahin Shamsabadi
B. M. L. Srivastava
A. Bellet
Nathalie Vauquier
Emmanuel Vincent
Mohamed Maouche
Marc Tommasi
Nicolas Papernot
MIACV
46
32
0
23 Feb 2022
Better Private Algorithms for Correlation Clustering
Daogao Liu
28
8
0
22 Feb 2022
Quantum Differential Privacy: An Information Theory Perspective
C. Hirche
Cambyse Rouzé
Daniel Stilck França
33
60
0
22 Feb 2022
Private Quantiles Estimation in the Presence of Atoms
Clément Lalanne
C. Gastaud
Nicolas Grislain
Aurélien Garivier
Rémi Gribonval
20
7
0
15 Feb 2022
Plume: Differential Privacy at Scale
Kareem Amin
Jennifer Gillenwater
Matthew Joseph
Alex Kulesza
Sergei Vassilvitskii
34
9
0
27 Jan 2022
Reconstructing Training Data with Informed Adversaries
Borja Balle
Giovanni Cherubin
Jamie Hayes
MIACV
AAML
43
158
0
13 Jan 2022
Gradient Leakage Attack Resilient Deep Learning
Wenqi Wei
Ling Liu
SILM
PILM
AAML
27
46
0
25 Dec 2021
Randomized Response Mechanisms for Differential Privacy Data Analysis: Bounds and Applications
Fei Ma
Ping Wang
28
4
0
14 Dec 2021
OPTT: Optimal Piecewise Transformation Technique for Analyzing Numerical Data under Local Differential Privacy
Fei Ma
Renbo Zhu
Ping Wang
14
1
0
09 Dec 2021
Membership Inference Attacks From First Principles
Nicholas Carlini
Steve Chien
Milad Nasr
Shuang Song
Andreas Terzis
Florian Tramèr
MIACV
MIALM
29
639
0
07 Dec 2021
Network Traffic Shaping for Enhancing Privacy in IoT Systems
Sijie Xiong
Anand D. Sarwate
N. Mandayam
10
16
0
29 Nov 2021
Differentially Private Federated Learning on Heterogeneous Data
Maxence Noble
A. Bellet
Aymeric Dieuleveut
FedML
13
102
0
17 Nov 2021
Distribution-Invariant Differential Privacy
Xuan Bi
Xiaotong Shen
16
13
0
08 Nov 2021
DP-XGBoost: Private Machine Learning at Scale
Cheng Cheng
Wei Dai
16
8
0
25 Oct 2021
Adaptive Differentially Private Empirical Risk Minimization
Xiaoxia Wu
Lingxiao Wang
Irina Cristali
Quanquan Gu
Rebecca Willett
38
6
0
14 Oct 2021
Generalization Techniques Empirically Outperform Differential Privacy against Membership Inference
Jiaxiang Liu
Simon Oya
Florian Kerschbaum
MIACV
14
9
0
11 Oct 2021
Previous
1
2
3
Next