ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1311.0686
  4. Cited By
Particle Metropolis-Hastings using gradient and Hessian information

Particle Metropolis-Hastings using gradient and Hessian information

4 November 2013
J. Dahlin
Fredrik Lindsten
Thomas B. Schon
ArXivPDFHTML

Papers citing "Particle Metropolis-Hastings using gradient and Hessian information"

4 / 4 papers shown
Title
Efficient Learning of the Parameters of Non-Linear Models using
  Differentiable Resampling in Particle Filters
Efficient Learning of the Parameters of Non-Linear Models using Differentiable Resampling in Particle Filters
Conor Rosato
Vincent Beraud
P. Horridge
Thomas B. Schon
Simon Maskell
15
14
0
02 Nov 2021
On Particle Methods for Parameter Estimation in State-Space Models
On Particle Methods for Parameter Estimation in State-Space Models
N. Kantas
Arnaud Doucet
Sumeetpal S. Singh
J. Maciejowski
Nicolas Chopin
24
427
0
30 Dec 2014
Particle Metropolis-adjusted Langevin algorithms
Particle Metropolis-adjusted Langevin algorithms
Christopher Nemeth
Chris Sherlock
Paul Fearnhead
28
24
0
23 Dec 2014
MCMC using Hamiltonian dynamics
MCMC using Hamiltonian dynamics
Radford M. Neal
170
3,260
0
09 Jun 2012
1