ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1310.8240
  4. Cited By
On the optimal estimation of probability measures in weak and strong
  topologies

On the optimal estimation of probability measures in weak and strong topologies

30 October 2013
Bharath K. Sriperumbudur
    OT
ArXivPDFHTML

Papers citing "On the optimal estimation of probability measures in weak and strong topologies"

16 / 16 papers shown
Title
Categorical and geometric methods in statistical, manifold, and machine learning
Categorical and geometric methods in statistical, manifold, and machine learning
H. Lê
Hà Quang Minh
Frederic Protin
W. Tuschmann
AI4CE
30
0
0
06 May 2025
A Dictionary of Closed-Form Kernel Mean Embeddings
A Dictionary of Closed-Form Kernel Mean Embeddings
F. Briol
A. Gessner
Toni Karvonen
Maren Mahsereci
BDL
78
1
0
26 Apr 2025
Towards Scalable Topological Regularizers
Towards Scalable Topological Regularizers
Hiu-Tung Wong
Darrick Lee
Hong Yan
BDL
59
0
0
24 Jan 2025
Spectral Regularized Kernel Goodness-of-Fit Tests
Spectral Regularized Kernel Goodness-of-Fit Tests
Omar Hagrass
Bharath K. Sriperumbudur
Bing Li
29
3
0
08 Aug 2023
Supervised learning with probabilistic morphisms and kernel mean
  embeddings
Supervised learning with probabilistic morphisms and kernel mean embeddings
H. Lê
GAN
18
1
0
10 May 2023
Confidence and Uncertainty Assessment for Distributional Random Forests
Confidence and Uncertainty Assessment for Distributional Random Forests
Jeffrey Näf
Corinne Emmenegger
Peter Buhlmann
N. Meinshausen
30
3
0
11 Feb 2023
A uniform kernel trick for high-dimensional two-sample problems
A uniform kernel trick for high-dimensional two-sample problems
Javier Cárcamo
Antonio Cuevas
Luis-Alberto Rodríguez
25
3
0
05 Oct 2022
Targeted Separation and Convergence with Kernel Discrepancies
Targeted Separation and Convergence with Kernel Discrepancies
Alessandro Barp
Carl-Johann Simon-Gabriel
Mark Girolami
Lester W. Mackey
42
14
0
26 Sep 2022
Kernel Methods for Causal Functions: Dose, Heterogeneous, and
  Incremental Response Curves
Kernel Methods for Causal Functions: Dose, Heterogeneous, and Incremental Response Curves
Rahul Singh
Liyuan Xu
A. Gretton
OffRL
53
26
0
10 Oct 2020
Robust Persistence Diagrams using Reproducing Kernels
Robust Persistence Diagrams using Reproducing Kernels
Siddharth Vishwanath
Kenji Fukumizu
S. Kuriki
Bharath K. Sriperumbudur
18
7
0
17 Jun 2020
Distributional Random Forests: Heterogeneity Adjustment and Multivariate
  Distributional Regression
Distributional Random Forests: Heterogeneity Adjustment and Multivariate Distributional Regression
Domagoj Cevid
Loris Michel
Jeffrey Näf
N. Meinshausen
Peter Buhlmann
27
39
0
29 May 2020
Statistical Inference for Generative Models with Maximum Mean
  Discrepancy
Statistical Inference for Generative Models with Maximum Mean Discrepancy
François‐Xavier Briol
Alessandro Barp
Andrew B. Duncan
Mark Girolami
21
70
0
13 Jun 2019
Signature moments to characterize laws of stochastic processes
Signature moments to characterize laws of stochastic processes
I. Chevyrev
Harald Oberhauser
10
108
0
25 Oct 2018
Geometrical Insights for Implicit Generative Modeling
Geometrical Insights for Implicit Generative Modeling
Léon Bottou
Martín Arjovsky
David Lopez-Paz
Maxime Oquab
29
49
0
21 Dec 2017
Uniform limit theorems for wavelet density estimators
Uniform limit theorems for wavelet density estimators
Evarist Giné
Richard Nickl
78
82
0
09 May 2008
Measuring and testing dependence by correlation of distances
Measuring and testing dependence by correlation of distances
G. Székely
Maria L. Rizzo
N. K. Bakirov
175
2,577
0
28 Mar 2008
1