ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1310.7780
  4. Cited By
The Information Geometry of Mirror Descent

The Information Geometry of Mirror Descent

29 October 2013
Garvesh Raskutti
S. Mukherjee
ArXivPDFHTML

Papers citing "The Information Geometry of Mirror Descent"

50 / 70 papers shown
Title
Spike-timing-dependent Hebbian learning as noisy gradient descent
Spike-timing-dependent Hebbian learning as noisy gradient descent
Niklas Dexheimer
Sascha Gaudlitz
Johannes Schmidt-Hieber
25
0
0
15 May 2025
Estimating Long-term Heterogeneous Dose-response Curve: Generalization Bound Leveraging Optimal Transport Weights
Estimating Long-term Heterogeneous Dose-response Curve: Generalization Bound Leveraging Optimal Transport Weights
Zeqin Yang
Weilin Chen
Ruichu Cai
Yuguang Yan
Zhifeng Hao
Zhipeng Yu
Zhichao Zou
Jixing Xu
Zhen Peng
Jiecheng Guo
61
3
0
27 Jun 2024
Theoretical Guarantees for Variational Inference with Fixed-Variance
  Mixture of Gaussians
Theoretical Guarantees for Variational Inference with Fixed-Variance Mixture of Gaussians
Tom Huix
Anna Korba
Alain Durmus
Eric Moulines
33
7
0
06 Jun 2024
Understanding Stochastic Natural Gradient Variational Inference
Understanding Stochastic Natural Gradient Variational Inference
Kaiwen Wu
Jacob R. Gardner
BDL
56
1
0
04 Jun 2024
Keep the Momentum: Conservation Laws beyond Euclidean Gradient Flows
Keep the Momentum: Conservation Laws beyond Euclidean Gradient Flows
Sibylle Marcotte
Rémi Gribonval
Gabriel Peyré
26
0
0
21 May 2024
Accelerating Convergence in Bayesian Few-Shot Classification
Accelerating Convergence in Bayesian Few-Shot Classification
Tianjun Ke
Haoqun Cao
Feng Zhou
31
0
0
02 May 2024
Riemannian stochastic optimization methods avoid strict saddle points
Riemannian stochastic optimization methods avoid strict saddle points
Ya-Ping Hsieh
Mohammad Reza Karimi
Andreas Krause
P. Mertikopoulos
30
5
0
04 Nov 2023
Information Geometry for the Working Information Theorist
Information Geometry for the Working Information Theorist
Kumar Vijay
Ashok Kumar
Ieee Ting-Kam Leonard Member
AI4CE
32
0
0
05 Oct 2023
A Fisher-Rao gradient flow for entropy-regularised Markov decision
  processes in Polish spaces
A Fisher-Rao gradient flow for entropy-regularised Markov decision processes in Polish spaces
B. Kerimkulov
J. Leahy
David Siska
Lukasz Szpruch
Yufei Zhang
21
7
0
04 Oct 2023
Acceleration in Policy Optimization
Acceleration in Policy Optimization
Veronica Chelu
Tom Zahavy
A. Guez
Doina Precup
Sebastian Flennerhag
43
0
0
18 Jun 2023
Learning Discretized Neural Networks under Ricci Flow
Learning Discretized Neural Networks under Ricci Flow
Jun Chen
Han Chen
Mengmeng Wang
Guang Dai
Ivor W. Tsang
Y. Liu
25
2
0
07 Feb 2023
Mirror descent of Hopfield model
Mirror descent of Hopfield model
Hyungjoon Soh
D. Kim
Juno Hwang
Junghyo Jo
17
0
0
29 Nov 2022
Information Geometry of Dynamics on Graphs and Hypergraphs
Information Geometry of Dynamics on Graphs and Hypergraphs
Tetsuya J. Kobayashi
Dimitri Loutchko
A. Kamimura
Shuhei A. Horiguchi
Yuki Sughiyama
AI4CE
15
10
0
26 Nov 2022
Regularized Rényi divergence minimization through Bregman proximal
  gradient algorithms
Regularized Rényi divergence minimization through Bregman proximal gradient algorithms
Thomas Guilmeau
Émilie Chouzenoux
Victor Elvira
31
3
0
09 Nov 2022
Stochastic Mirror Descent in Average Ensemble Models
Stochastic Mirror Descent in Average Ensemble Models
Taylan Kargin
Fariborz Salehi
B. Hassibi
21
1
0
27 Oct 2022
Robust Imitation via Mirror Descent Inverse Reinforcement Learning
Robust Imitation via Mirror Descent Inverse Reinforcement Learning
Dong-Sig Han
Hyunseok Kim
Hyun-Dong Lee
Je-hwan Ryu
Byoung-Tak Zhang
28
2
0
20 Oct 2022
Linear Convergence for Natural Policy Gradient with Log-linear Policy
  Parametrization
Linear Convergence for Natural Policy Gradient with Log-linear Policy Parametrization
Carlo Alfano
Patrick Rebeschini
51
13
0
30 Sep 2022
Conformal Mirror Descent with Logarithmic Divergences
Conformal Mirror Descent with Logarithmic Divergences
Amanjit Kainth
Ting-Kam Leonard Wong
Frank Rudzicz
18
4
0
07 Sep 2022
Conjugate Natural Selection
Conjugate Natural Selection
Reilly P. Raab
Luca de Alfaro
Yang Liu
18
0
0
29 Aug 2022
Density-Aware Personalized Training for Risk Prediction in Imbalanced
  Medical Data
Density-Aware Personalized Training for Risk Prediction in Imbalanced Medical Data
Zepeng Huo
Xiaoning Qian
Shuai Huang
Zhangyang Wang
Bobak J. Mortazavi
OOD
12
3
0
23 Jul 2022
Bregman Power k-Means for Clustering Exponential Family Data
Bregman Power k-Means for Clustering Exponential Family Data
Adithya Vellal
Saptarshi Chakraborty
Jason Xu
22
6
0
22 Jun 2022
First-Order Algorithms for Min-Max Optimization in Geodesic Metric
  Spaces
First-Order Algorithms for Min-Max Optimization in Geodesic Metric Spaces
Michael I. Jordan
Tianyi Lin
Emmanouil-Vasileios Vlatakis-Gkaragkounis
27
19
0
04 Jun 2022
Importance Weighted Structure Learning for Scene Graph Generation
Importance Weighted Structure Learning for Scene Graph Generation
Daqing Liu
M. Bober
J. Kittler
24
5
0
14 May 2022
Partitioned Variational Inference: A Framework for Probabilistic
  Federated Learning
Partitioned Variational Inference: A Framework for Probabilistic Federated Learning
Matthew Ashman
T. Bui
Cuong V Nguyen
Efstratios Markou
Adrian Weller
S. Swaroop
Richard E. Turner
FedML
19
12
0
24 Feb 2022
Entropic trust region for densest crystallographic symmetry group
  packings
Entropic trust region for densest crystallographic symmetry group packings
M. Torda
John Y. Goulermas
Roland Púcek
V. Kurlin
15
2
0
24 Feb 2022
A Geometric Understanding of Natural Gradient
A Geometric Understanding of Natural Gradient
Qinxun Bai
S. Rosenberg
Wei Xu
21
2
0
13 Feb 2022
Constrained Structure Learning for Scene Graph Generation
Constrained Structure Learning for Scene Graph Generation
Daqing Liu
M. Bober
J. Kittler
3DV
CML
BDL
OCL
55
7
0
27 Jan 2022
Natural Gradient Variational Inference with Gaussian Mixture Models
Natural Gradient Variational Inference with Gaussian Mixture Models
F. Mahdisoltani
BDL
13
1
0
15 Nov 2021
The Information Geometry of Unsupervised Reinforcement Learning
The Information Geometry of Unsupervised Reinforcement Learning
Benjamin Eysenbach
Ruslan Salakhutdinov
Sergey Levine
SSL
OffRL
58
31
0
06 Oct 2021
Approximate Newton policy gradient algorithms
Approximate Newton policy gradient algorithms
Haoya Li
Samarth Gupta
Hsiangfu Yu
Lexing Ying
Inderjit Dhillon
41
2
0
05 Oct 2021
FGOT: Graph Distances based on Filters and Optimal Transport
FGOT: Graph Distances based on Filters and Optimal Transport
Hermina Petric Maretic
Mireille El Gheche
Giovanni Chierchia
P. Frossard
OT
20
17
0
09 Sep 2021
Provable Benefits of Actor-Critic Methods for Offline Reinforcement
  Learning
Provable Benefits of Actor-Critic Methods for Offline Reinforcement Learning
Andrea Zanette
Martin J. Wainwright
Emma Brunskill
OffRL
29
111
0
19 Aug 2021
The Bayesian Learning Rule
The Bayesian Learning Rule
Mohammad Emtiyaz Khan
Håvard Rue
BDL
57
73
0
09 Jul 2021
Sampling with Mirrored Stein Operators
Sampling with Mirrored Stein Operators
Jiaxin Shi
Chang-rui Liu
Lester W. Mackey
45
19
0
23 Jun 2021
On the Linear convergence of Natural Policy Gradient Algorithm
On the Linear convergence of Natural Policy Gradient Algorithm
S. Khodadadian
P. Jhunjhunwala
Sushil Mahavir Varma
S. T. Maguluri
30
56
0
04 May 2021
Finite Sample Analysis of Two-Time-Scale Natural Actor-Critic Algorithm
Finite Sample Analysis of Two-Time-Scale Natural Actor-Critic Algorithm
S. Khodadadian
Thinh T. Doan
J. Romberg
S. T. Maguluri
25
42
0
26 Jan 2021
Mirror-Descent Inverse Kinematics for Box-constrained Joint Space
Mirror-Descent Inverse Kinematics for Box-constrained Joint Space
Taisuke Kobayashi
Takanori Jin
38
2
0
19 Jan 2021
Sparse Representations of Positive Functions via First and Second-Order
  Pseudo-Mirror Descent
Sparse Representations of Positive Functions via First and Second-Order Pseudo-Mirror Descent
A. Chakraborty
K. Rajawat
Alec Koppel
16
3
0
13 Nov 2020
Homeomorphic-Invariance of EM: Non-Asymptotic Convergence in KL
  Divergence for Exponential Families via Mirror Descent
Homeomorphic-Invariance of EM: Non-Asymptotic Convergence in KL Divergence for Exponential Families via Mirror Descent
Frederik Kunstner
Raunak Kumar
Mark W. Schmidt
30
21
0
02 Nov 2020
Better Fine-Tuning by Reducing Representational Collapse
Better Fine-Tuning by Reducing Representational Collapse
Armen Aghajanyan
Akshat Shrivastava
Anchit Gupta
Naman Goyal
Luke Zettlemoyer
S. Gupta
AAML
41
209
0
06 Aug 2020
On Linear Convergence of Policy Gradient Methods for Finite MDPs
On Linear Convergence of Policy Gradient Methods for Finite MDPs
Jalaj Bhandari
Daniel Russo
57
59
0
21 Jul 2020
Competitive Mirror Descent
Competitive Mirror Descent
F. Schafer
Anima Anandkumar
H. Owhadi
13
12
0
17 Jun 2020
Mirrorless Mirror Descent: A Natural Derivation of Mirror Descent
Mirrorless Mirror Descent: A Natural Derivation of Mirror Descent
Suriya Gunasekar
Blake E. Woodworth
Nathan Srebro
MDE
11
28
0
02 Apr 2020
Training Binary Neural Networks using the Bayesian Learning Rule
Training Binary Neural Networks using the Bayesian Learning Rule
Xiangming Meng
Roman Bachmann
Mohammad Emtiyaz Khan
BDL
MQ
30
40
0
25 Feb 2020
Reparameterizing Mirror Descent as Gradient Descent
Reparameterizing Mirror Descent as Gradient Descent
Ehsan Amid
Manfred K. Warmuth
OOD
11
3
0
24 Feb 2020
Dual Stochastic Natural Gradient Descent and convergence of interior
  half-space gradient approximations
Dual Stochastic Natural Gradient Descent and convergence of interior half-space gradient approximations
Borja Sánchez-López
J. Cerquides
12
1
0
19 Jan 2020
A Fully Natural Gradient Scheme for Improving Inference of the
  Heterogeneous Multi-Output Gaussian Process Model
A Fully Natural Gradient Scheme for Improving Inference of the Heterogeneous Multi-Output Gaussian Process Model
Juan J. Giraldo
Mauricio A. Alvarez
BDL
13
4
0
22 Nov 2019
SMART: Robust and Efficient Fine-Tuning for Pre-trained Natural Language
  Models through Principled Regularized Optimization
SMART: Robust and Efficient Fine-Tuning for Pre-trained Natural Language Models through Principled Regularized Optimization
Haoming Jiang
Pengcheng He
Weizhu Chen
Xiaodong Liu
Jianfeng Gao
T. Zhao
22
558
0
08 Nov 2019
Black-box Optimizer with Implicit Natural Gradient
Black-box Optimizer with Implicit Natural Gradient
Yueming Lyu
Ivor W. Tsang
22
0
0
09 Oct 2019
Hopfield Neural Network Flow: A Geometric Viewpoint
Hopfield Neural Network Flow: A Geometric Viewpoint
A. Halder
Kenneth F. Caluya
Bertrand Travacca
S. Moura
15
10
0
04 Aug 2019
12
Next