ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1310.7441
  4. Cited By
Hierarchical Clustering of Hyperspectral Images using Rank-Two
  Nonnegative Matrix Factorization

Hierarchical Clustering of Hyperspectral Images using Rank-Two Nonnegative Matrix Factorization

14 September 2013
Nicolas Gillis
Da Kuang
Haesun Park
ArXivPDFHTML

Papers citing "Hierarchical Clustering of Hyperspectral Images using Rank-Two Nonnegative Matrix Factorization"

4 / 4 papers shown
Title
On the Robustness of the Successive Projection Algorithm
On the Robustness of the Successive Projection Algorithm
Giovanni Barbarino
Nicolas Gillis
83
0
0
25 Nov 2024
Unsupervised Segmentation of Hyperspectral Remote Sensing Images with
  Superpixels
Unsupervised Segmentation of Hyperspectral Remote Sensing Images with Superpixels
Mirko Paolo Barbato
Paolo Napoletano
Flavio Piccoli
Raimondo Schettini
13
20
0
26 Apr 2022
Unsupervised Classification in Hyperspectral Imagery with Nonlocal Total
  Variation and Primal-Dual Hybrid Gradient Algorithm
Unsupervised Classification in Hyperspectral Imagery with Nonlocal Total Variation and Primal-Dual Hybrid Gradient Algorithm
Wei Zhu
Victoria Chayes
Alexandre Tiard
Stephanie M. Sanchez
D. Dahlberg
Andrea L. Bertozzi
Stanley Osher
Dominique Zosso
Da Kuang
22
52
0
27 Apr 2016
Fast and Robust Recursive Algorithms for Separable Nonnegative Matrix
  Factorization
Fast and Robust Recursive Algorithms for Separable Nonnegative Matrix Factorization
Nicolas Gillis
S. Vavasis
58
222
0
06 Aug 2012
1