Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1310.1533
Cited By
CAM: Causal additive models, high-dimensional order search and penalized regression
6 October 2013
Peter Buhlmann
J. Peters
J. Ernest
CML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"CAM: Causal additive models, high-dimensional order search and penalized regression"
50 / 54 papers shown
Title
Identifying Causal Direction via Variational Bayesian Compression
Quang-Duy Tran
Bao Duong
Phuoc Nguyen
Thin Nguyen
CML
34
0
0
12 May 2025
Characterization and Greedy Learning of Gaussian Structural Causal Models under Unknown Interventions
Juan L. Gamella
Armeen Taeb
C. Heinze-Deml
Peter Buhlmann
CML
94
8
0
13 Mar 2025
Causal Discovery via Bayesian Optimization
Bao Duong
Sunil Gupta
Thin Nguyen
44
0
0
28 Jan 2025
Causal-discovery-based root-cause analysis and its application in time-series prediction error diagnosis
Hiroshi Yokoyama
Ryusei Shingaki
Kaneharu Nishino
Shohei Shimizu
Thong Pham
CML
75
0
0
11 Nov 2024
A Skewness-Based Criterion for Addressing Heteroscedastic Noise in Causal Discovery
Yingyu Lin
Yuxing Huang
Wenqin Liu
Haoran Deng
Ignavier Ng
Kun Zhang
Mingming Gong
Yi-An Ma
Biwei Huang
39
1
0
08 Oct 2024
Score matching through the roof: linear, nonlinear, and latent variables causal discovery
Francesco Montagna
P. M. Faller
Patrick Bloebaum
Elke Kirschbaum
Francesco Locatello
CML
87
0
0
26 Jul 2024
Standardizing Structural Causal Models
Weronika Ormaniec
Scott Sussex
Lars Lorch
Bernhard Schölkopf
Andreas Krause
CML
56
5
0
17 Jun 2024
Scalable and Flexible Causal Discovery with an Efficient Test for Adjacency
Alan Nawzad Amin
Andrew Gordon Wilson
CML
34
1
0
13 Jun 2024
Demystifying amortized causal discovery with transformers
Francesco Montagna
Max Cairney-Leeming
Dhanya Sridhar
Francesco Locatello
CML
57
1
0
27 May 2024
Learning Directed Acyclic Graphs from Partial Orderings
Ali Shojaie
Wenyu Chen
CML
45
0
0
24 Mar 2024
Sample, estimate, aggregate: A recipe for causal discovery foundation models
Menghua Wu
Yujia Bao
Regina Barzilay
Tommi Jaakkola
CML
49
7
0
02 Feb 2024
Recovering Linear Causal Models with Latent Variables via Cholesky Factorization of Covariance Matrix
Yunfeng Cai
Xu Li
Ming Sun
Ping Li
CML
21
1
0
01 Nov 2023
Robustness of Algorithms for Causal Structure Learning to Hyperparameter Choice
Damian Machlanski
Spyridon Samothrakis
Paul Clarke
CML
36
1
0
27 Oct 2023
Causal Representation Learning Made Identifiable by Grouping of Observational Variables
H. Morioka
Aapo Hyvarinen
OOD
CML
BDL
33
9
0
24 Oct 2023
Tree Search in DAG Space with Model-based Reinforcement Learning for Causal Discovery
Victor-Alexandru Darvariu
Stephen Hailes
Mirco Musolesi
CML
41
2
0
20 Oct 2023
Differentiable Bayesian Structure Learning with Acyclicity Assurance
Quang-Duy Tran
Phuoc Nguyen
Bao Duong
Thin Nguyen
32
2
0
04 Sep 2023
Order-based Structure Learning with Normalizing Flows
Hamidreza Kamkari
Vahid Balazadeh Meresht
Vahid Zehtab
Rahul G. Krishnan
CML
31
1
0
14 Aug 2023
Learning nonparametric DAGs with incremental information via high-order HSIC
Yafei Wang
Jianguo Liu
CML
27
0
0
11 Aug 2023
causalAssembly
\texttt{causalAssembly}
causalAssembly
: Generating Realistic Production Data for Benchmarking Causal Discovery
Konstantin Göbler
Tobias Windisch
Mathias Drton
T. Pychynski
Steffen Sonntag
Martin Roth
CML
73
10
0
19 Jun 2023
Learning DAGs from Data with Few Root Causes
Panagiotis Misiakos
Chris Wendler
Markus Püschel
CML
40
10
0
25 May 2023
A Survey on Causal Discovery: Theory and Practice
Alessio Zanga
Fabio Stella
CML
27
38
0
17 May 2023
A Scale-Invariant Sorting Criterion to Find a Causal Order in Additive Noise Models
Alexander G. Reisach
Myriam Tami
C. Seiler
Antoine Chambaz
S. Weichwald
CML
36
19
0
31 Mar 2023
A Survey on Causal Discovery Methods for I.I.D. and Time Series Data
Uzma Hasan
Emam Hossain
Md. Osman Gani
CML
AI4TS
31
24
0
27 Mar 2023
Rank-Based Causal Discovery for Post-Nonlinear Models
Grigor Keropyan
David Strieder
Mathias Drton
CML
8
6
0
23 Feb 2023
On Learning Necessary and Sufficient Causal Graphs
Hengrui Cai
Yixin Wang
Michael Jordan
Rui Song
CML
24
12
0
29 Jan 2023
DAG Learning on the Permutahedron
Valentina Zantedeschi
Luca Franceschi
Jean Kaddour
Matt J. Kusner
Vlad Niculae
27
11
0
27 Jan 2023
Variation-based Cause Effect Identification
Mohamed Amine ben Salem
Karim Barsim
Bin Yang
CML
24
0
0
22 Nov 2022
Confounder Balancing for Instrumental Variable Regression with Latent Variable
Anpeng Wu
Kun Kuang
Ruoxuan Xiong
Bo Li
Fei Wu
CML
38
0
0
18 Nov 2022
Learning Causal Graphs in Manufacturing Domains using Structural Equation Models
Maximilian Kertel
Stefan Harmeling
Markus Pauly
CML
30
4
0
26 Oct 2022
DAGMA: Learning DAGs via M-matrices and a Log-Determinant Acyclicity Characterization
Kevin Bello
Bryon Aragam
Pradeep Ravikumar
61
78
0
16 Sep 2022
Do learned representations respect causal relationships?
Lan Wang
Vishnu Naresh Boddeti
NAI
CML
OOD
29
6
0
02 Apr 2022
Score matching enables causal discovery of nonlinear additive noise models
Paul Rolland
V. Cevher
Matthäus Kleindessner
Chris Russel
Bernhard Schölkopf
Dominik Janzing
Francesco Locatello
CML
54
84
0
08 Mar 2022
Differentiable Causal Discovery Under Latent Interventions
Gonccalo R. A. Faria
André F. T. Martins
Mário A. T. Figueiredo
BDL
CML
OOD
45
23
0
04 Mar 2022
Optimal estimation of Gaussian DAG models
Ming Gao
W. Tai
Bryon Aragam
38
9
0
25 Jan 2022
Distributed Learning of Generalized Linear Causal Networks
Qiaoling Ye
Arash A. Amini
Qing Zhou
CML
OOD
AI4CE
38
16
0
23 Jan 2022
gCastle: A Python Toolbox for Causal Discovery
Keli Zhang
Shengyu Zhu
Marcus Kalander
Ignavier Ng
Junjian Ye
Zhitang Chen
Lujia Pan
CML
27
60
0
30 Nov 2021
A Fast Non-parametric Approach for Local Causal Structure Learning
Mona Azadkia
Armeen Taeb
Peter Buhlmann
CML
27
3
0
29 Nov 2021
Efficient Learning of Quadratic Variance Function Directed Acyclic Graphs via Topological Layers
Wei Zhou
Xin He
Wei Zhong
Junhui Wang
CML
33
3
0
01 Nov 2021
Structure learning in polynomial time: Greedy algorithms, Bregman information, and exponential families
Goutham Rajendran
Bohdan Kivva
Ming Gao
Bryon Aragam
27
17
0
10 Oct 2021
Variational Causal Networks: Approximate Bayesian Inference over Causal Structures
Yashas Annadani
Jonas Rothfuss
Alexandre Lacoste
Nino Scherrer
Anirudh Goyal
Yoshua Bengio
Stefan Bauer
BDL
CML
32
48
0
14 Jun 2021
DAGs with No Curl: An Efficient DAG Structure Learning Approach
Yue Yu
Tian Gao
Naiyu Yin
Q. Ji
CML
22
59
0
14 Jun 2021
Ordering-Based Causal Discovery with Reinforcement Learning
Xiaoqiang Wang
Yali Du
Shengyu Zhu
Liangjun Ke
Zhitang Chen
Jianye Hao
Jun Wang
CML
26
63
0
14 May 2021
Data Generating Process to Evaluate Causal Discovery Techniques for Time Series Data
A. Lawrence
Marcus Kaiser
Rui Sampaio
Maksim Sipos
CML
AI4TS
19
17
0
16 Apr 2021
D'ya like DAGs? A Survey on Structure Learning and Causal Discovery
M. Vowels
Necati Cihan Camgöz
Richard Bowden
CML
37
296
0
03 Mar 2021
Beware of the Simulated DAG! Causal Discovery Benchmarks May Be Easy To Game
Alexander G. Reisach
C. Seiler
S. Weichwald
CML
21
136
0
26 Feb 2021
Learning Causal Semantic Representation for Out-of-Distribution Prediction
Chang-Shu Liu
Xinwei Sun
Jindong Wang
Haoyue Tang
Tao Li
Tao Qin
Wei Chen
Tie-Yan Liu
CML
OODD
OOD
32
104
0
03 Nov 2020
DAGs with No Fears: A Closer Look at Continuous Optimization for Learning Bayesian Networks
Dennis L. Wei
Tian Gao
Yue Yu
CML
56
71
0
18 Oct 2020
Conditionally-additive-noise Models for Structure Learning
D. Chicharro
S. Panzeri
I. Shpitser
CML
11
4
0
20 May 2019
Causal Discovery Toolbox: Uncover causal relationships in Python
Diviyan Kalainathan
Olivier Goudet
CML
17
82
0
06 Mar 2019
Structural Agnostic Modeling: Adversarial Learning of Causal Graphs
Diviyan Kalainathan
Olivier Goudet
Isabelle M Guyon
David Lopez-Paz
Michèle Sebag
CML
24
93
0
13 Mar 2018
1
2
Next