ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1310.0740
  4. Cited By
Pseudo-Marginal Bayesian Inference for Gaussian Processes

Pseudo-Marginal Bayesian Inference for Gaussian Processes

2 October 2013
Maurizio Filippone
Mark Girolami
ArXivPDFHTML

Papers citing "Pseudo-Marginal Bayesian Inference for Gaussian Processes"

9 / 9 papers shown
Title
Bayesian Deep Learning with Multilevel Trace-class Neural Networks
Bayesian Deep Learning with Multilevel Trace-class Neural Networks
Neil K. Chada
Ajay Jasra
K. Law
Sumeetpal S. Singh
BDL
UQCV
83
3
0
24 Mar 2022
Validating Gaussian Process Models with Simulation-Based Calibration
Validating Gaussian Process Models with Simulation-Based Calibration
John Mcleod
F. Simpson
22
3
0
27 Oct 2021
Vecchia-Laplace approximations of generalized Gaussian processes for big
  non-Gaussian spatial data
Vecchia-Laplace approximations of generalized Gaussian processes for big non-Gaussian spatial data
Daniel Zilber
Matthias Katzfuss
14
34
0
18 Jun 2019
Hyperpriors for Matérn fields with applications in Bayesian inversion
Hyperpriors for Matérn fields with applications in Bayesian inversion
L. Roininen
Mark Girolami
Sari Lasanen
M. Markkanen
8
57
0
09 Dec 2016
Pseudo-Marginal Slice Sampling
Pseudo-Marginal Slice Sampling
Iain Murray
Matthew M. Graham
28
37
0
10 Oct 2015
Unbiased Bayesian Inference for Population Markov Jump Processes via
  Random Truncations
Unbiased Bayesian Inference for Population Markov Jump Processes via Random Truncations
Anastasis Georgoulas
J. Hillston
G. Sanguinetti
28
39
0
28 Sep 2015
Gradient-free Hamiltonian Monte Carlo with Efficient Kernel Exponential
  Families
Gradient-free Hamiltonian Monte Carlo with Efficient Kernel Exponential Families
Heiko Strathmann
Dino Sejdinovic
Samuel Livingstone
Z. Szabó
A. Gretton
BDL
24
76
0
08 Jun 2015
Enabling scalable stochastic gradient-based inference for Gaussian
  processes by employing the Unbiased LInear System SolvEr (ULISSE)
Enabling scalable stochastic gradient-based inference for Gaussian processes by employing the Unbiased LInear System SolvEr (ULISSE)
Maurizio Filippone
Raphael Engler
24
31
0
22 Jan 2015
Control Functionals for Quasi-Monte Carlo Integration
Control Functionals for Quasi-Monte Carlo Integration
Chris J. Oates
Mark Girolami
43
27
0
14 Jan 2015
1