ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1309.7598
  4. Cited By
On Sampling from the Gibbs Distribution with Random Maximum A-Posteriori
  Perturbations

On Sampling from the Gibbs Distribution with Random Maximum A-Posteriori Perturbations

29 September 2013
Tamir Hazan
Subhransu Maji
Tommi Jaakkola
ArXivPDFHTML

Papers citing "On Sampling from the Gibbs Distribution with Random Maximum A-Posteriori Perturbations"

7 / 7 papers shown
Title
Order-based Structure Learning with Normalizing Flows
Order-based Structure Learning with Normalizing Flows
Hamidreza Kamkari
Vahid Balazadeh Meresht
Vahid Zehtab
Rahul G. Krishnan
CML
31
1
0
14 Aug 2023
Differentiable Clustering with Perturbed Spanning Forests
Differentiable Clustering with Perturbed Spanning Forests
Lawrence Stewart
Francis R. Bach
Felipe Llinares-López
Quentin Berthet
29
8
0
25 May 2023
On Quantum Circuits for Discrete Graphical Models
On Quantum Circuits for Discrete Graphical Models
Nico Piatkowski
Christa Zoufal
19
4
0
01 Jun 2022
A Review of the Gumbel-max Trick and its Extensions for Discrete
  Stochasticity in Machine Learning
A Review of the Gumbel-max Trick and its Extensions for Discrete Stochasticity in Machine Learning
Iris A. M. Huijben
W. Kool
Max B. Paulus
Ruud J. G. van Sloun
28
94
0
04 Oct 2021
Gradient Estimation with Stochastic Softmax Tricks
Gradient Estimation with Stochastic Softmax Tricks
Max B. Paulus
Dami Choi
Daniel Tarlow
Andreas Krause
Chris J. Maddison
BDL
36
85
0
15 Jun 2020
Learning with Differentiable Perturbed Optimizers
Learning with Differentiable Perturbed Optimizers
Quentin Berthet
Mathieu Blondel
O. Teboul
Marco Cuturi
Jean-Philippe Vert
Francis R. Bach
29
105
0
20 Feb 2020
Perturb-and-MPM: Quantifying Segmentation Uncertainty in Dense
  Multi-Label CRFs
Perturb-and-MPM: Quantifying Segmentation Uncertainty in Dense Multi-Label CRFs
Raphael Meier
Urspeter Knecht
Alain Jungo
Roland Wiest
M. Reyes
21
6
0
01 Mar 2017
1