ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1308.1883
  4. Cited By
Nested particle filters for online parameter estimation in discrete-time
  state-space Markov models

Nested particle filters for online parameter estimation in discrete-time state-space Markov models

8 August 2013
Dan Crisan
Joaquín Míguez
ArXivPDFHTML

Papers citing "Nested particle filters for online parameter estimation in discrete-time state-space Markov models"

30 / 30 papers shown
Title
When Counterfactual Reasoning Fails: Chaos and Real-World Complexity
When Counterfactual Reasoning Fails: Chaos and Real-World Complexity
Yahya Aalaila
Gerrit Großmann
Sumantrak Mukherjee
Jonas Wahl
Sebastian Vollmer
CML
LRM
64
0
0
31 Mar 2025
Nudging state-space models for Bayesian filtering under misspecified
  dynamics
Nudging state-space models for Bayesian filtering under misspecified dynamics
Fabian Gonzalez
O. Deniz Akyildiz
Dan Crisan
Joaquín Míguez
44
0
0
31 Oct 2024
A dimension reduction approach for loss valuation in credit risk
  modelling
A dimension reduction approach for loss valuation in credit risk modelling
Jian He
Asma Khedher
Peter Spreij
13
0
0
29 Dec 2023
Learning Differentiable Particle Filter on the Fly
Learning Differentiable Particle Filter on the Fly
Jiaxi Li
Xiongjie Chen
Yunpeng Li
31
1
0
10 Dec 2023
Deep State-Space Model for Predicting Cryptocurrency Price
Deep State-Space Model for Predicting Cryptocurrency Price
Shalini Sharma
A. Majumdar
Émilie Chouzenoux
Victor Elvira
28
0
0
21 Nov 2023
Sparse Graphical Linear Dynamical Systems
Sparse Graphical Linear Dynamical Systems
Émilie Chouzenoux
Victor Elvira
36
7
0
06 Jul 2023
An overview of differentiable particle filters for data-adaptive
  sequential Bayesian inference
An overview of differentiable particle filters for data-adaptive sequential Bayesian inference
Xiongjie Chen
Yunpeng Li
33
14
0
19 Feb 2023
Sequential Bayesian Learning for Hidden Semi-Markov Models
Sequential Bayesian Learning for Hidden Semi-Markov Models
Patrick Aschermayr
K. Kalogeropoulos
21
0
0
25 Jan 2023
Tensor-train methods for sequential state and parameter learning in
  state-space models
Tensor-train methods for sequential state and parameter learning in state-space models
Yiran Zhao
Tiangang Cui
24
2
0
24 Jan 2023
Factored Conditional Filtering: Tracking States and Estimating
  Parameters in High-Dimensional Spaces
Factored Conditional Filtering: Tracking States and Estimating Parameters in High-Dimensional Spaces
Dawei Chen
Samuel Yang-Zhao
John Lloyd
K. S. Ng
AI4TS
4
1
0
05 Jun 2022
Nested smoothing algorithms for inference and tracking of heterogeneous
  multi-scale state-space systems
Nested smoothing algorithms for inference and tracking of heterogeneous multi-scale state-space systems
Sara Pérez-Vieites
H. Molina-Bulla
Joaquín Míguez
19
0
0
16 Apr 2022
Automatically adapting the number of state particles in SMC$^2$
Automatically adapting the number of state particles in SMC2^22
Imke Botha
Robert Kohn
Leah F. South
Christopher C. Drovandi
15
1
0
27 Jan 2022
Optimality in Noisy Importance Sampling
Optimality in Noisy Importance Sampling
F. Llorente
Luca Martino
Jesse Read
D. Delgado
43
5
0
07 Jan 2022
Efficient Learning of the Parameters of Non-Linear Models using
  Differentiable Resampling in Particle Filters
Efficient Learning of the Parameters of Non-Linear Models using Differentiable Resampling in Particle Filters
Conor Rosato
Vincent Beraud
P. Horridge
Thomas B. Schon
Simon Maskell
18
14
0
02 Nov 2021
Nested Gaussian filters for recursive Bayesian inference and nonlinear
  tracking in state space models
Nested Gaussian filters for recursive Bayesian inference and nonlinear tracking in state space models
Sara Pérez-Vieites
Joaquín Míguez
11
9
0
23 Mar 2021
A Global Stochastic Optimization Particle Filter Algorithm
A Global Stochastic Optimization Particle Filter Algorithm
Mathieu Gerber
Randal Douc
9
2
0
09 Jul 2020
Cluster Prediction for Opinion Dynamics from Partial Observations
Cluster Prediction for Opinion Dynamics from Partial Observations
Zehong Zhang
Fei Lu
25
3
0
04 Jul 2020
On the performance of particle filters with adaptive number of particles
On the performance of particle filters with adaptive number of particles
Victor Elvira
Joaquín Míguez
Petar M. Djurić
17
1
0
04 Nov 2019
Combined parameter and state inference with automatically calibrated ABC
Combined parameter and state inference with automatically calibrated ABC
Anthony Ebert
Pierre Pudlo
Kerrie Mengersen
P. Wu
Christopher C. Drovandi
25
1
0
31 Oct 2019
A Kalman particle filter for online parameter estimation with
  applications to affine models
A Kalman particle filter for online parameter estimation with applications to affine models
Jian He
Asma Khedher
Peter Spreij
16
6
0
21 May 2019
Parallel sequential Monte Carlo for stochastic gradient-free nonconvex
  optimization
Parallel sequential Monte Carlo for stochastic gradient-free nonconvex optimization
Ömer Deniz Akyildiz
Dan Crisan
Joaquín Míguez
31
5
0
23 Nov 2018
Nudging the particle filter
Nudging the particle filter
Ömer Deniz Akyıldız
Joaquín Míguez
32
26
0
25 Aug 2017
A probabilistic scheme for joint parameter estimation and state
  prediction in complex dynamical systems
A probabilistic scheme for joint parameter estimation and state prediction in complex dynamical systems
Sara Pérez-Vieites
I. P. Mariño
Joaquín Míguez
24
16
0
11 Aug 2017
Inference via low-dimensional couplings
Inference via low-dimensional couplings
Alessio Spantini
Daniele Bigoni
Youssef Marzouk
40
119
0
17 Mar 2017
Analysis of a nonlinear importance sampling scheme for Bayesian
  parameter estimation in state-space models
Analysis of a nonlinear importance sampling scheme for Bayesian parameter estimation in state-space models
Joaquín Míguez
I. P. Mariño
M. A. Vázquez
10
11
0
10 Feb 2017
High-dimensional Filtering using Nested Sequential Monte Carlo
High-dimensional Filtering using Nested Sequential Monte Carlo
C. A. Naesseth
Fredrik Lindsten
Thomas B. Schon
37
22
0
29 Dec 2016
A rare event approach to high dimensional Approximate Bayesian
  computation
A rare event approach to high dimensional Approximate Bayesian computation
D. Prangle
R. Everitt
T. Kypraios
23
22
0
08 Nov 2016
Uniform convergence over time of a nested particle filtering scheme for
  recursive parameter estimation in state--space Markov models
Uniform convergence over time of a nested particle filtering scheme for recursive parameter estimation in state--space Markov models
Dan Crisan
Joaquín Míguez
15
12
0
30 Mar 2016
Adapting the Number of Particles in Sequential Monte Carlo Methods
  through an Online Scheme for Convergence Assessment
Adapting the Number of Particles in Sequential Monte Carlo Methods through an Online Scheme for Convergence Assessment
Victor Elvira
Joaquín Míguez
Petar M. Djurić
13
70
0
16 Sep 2015
Biased Online Parameter Inference for State-Space Models
Biased Online Parameter Inference for State-Space Models
Yan Zhou
Ajay Jasra
43
9
0
01 Mar 2015
1