Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1307.1493
Cited By
Dropout Training as Adaptive Regularization
4 July 2013
Stefan Wager
Sida I. Wang
Percy Liang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Dropout Training as Adaptive Regularization"
21 / 71 papers shown
Title
Learning Neural Representations of Human Cognition across Many fMRI Studies
G. Flandin
D. Handwerker
Michael Hanke
D. Keator
Thomas E. Nichols
AI4CE
16
44
0
31 Oct 2017
EndNet: Sparse AutoEncoder Network for Endmember Extraction and Hyperspectral Unmixing
Savas Ozkan
Berk Kaya
G. Akar
20
190
0
06 Aug 2017
Missing Data Imputation for Supervised Learning
Jason Poulos
Rafael Valle
10
62
0
28 Oct 2016
Structured Dropout for Weak Label and Multi-Instance Learning and Its Application to Score-Informed Source Separation
Sebastian Ewert
Mark Sandler
13
23
0
15 Sep 2016
Lets keep it simple, Using simple architectures to outperform deeper and more complex architectures
S. H. HasanPour
Mohammad Rouhani
Mohsen Fayyaz
Mohammad Sabokrou
18
118
0
22 Aug 2016
Regularization for Unsupervised Deep Neural Nets
Baiyang Wang
Diego Klabjan
BDL
23
25
0
15 Aug 2016
Relative Natural Gradient for Learning Large Complex Models
Ke Sun
Frank Nielsen
29
5
0
20 Jun 2016
On Complex Valued Convolutional Neural Networks
Nitzan Guberman
CVBM
17
133
0
29 Feb 2016
Ensemble Robustness and Generalization of Stochastic Deep Learning Algorithms
Tom Zahavy
Bingyi Kang
Alex Sivak
Jiashi Feng
Huan Xu
Shie Mannor
OOD
AAML
31
12
0
07 Feb 2016
Improved Dropout for Shallow and Deep Learning
Zhe Li
Boqing Gong
Tianbao Yang
BDL
SyDa
27
79
0
06 Feb 2016
Semisupervised Autoencoder for Sentiment Analysis
Shuangfei Zhai
Zhongfei Zhang
14
63
0
14 Dec 2015
Towards Dropout Training for Convolutional Neural Networks
Haibing Wu
Xiaodong Gu
19
298
0
01 Dec 2015
A Primer on Neural Network Models for Natural Language Processing
Yoav Goldberg
AI4CE
41
1,128
0
02 Oct 2015
A Scale Mixture Perspective of Multiplicative Noise in Neural Networks
Eric T. Nalisnick
Anima Anandkumar
Padhraic Smyth
27
19
0
10 Jun 2015
DART: Dropouts meet Multiple Additive Regression Trees
Rashmi Korlakai Vinayak
Ran Gilad-Bachrach
31
189
0
07 May 2015
A Bayesian encourages dropout
S. Maeda
BDL
29
45
0
22 Dec 2014
Learning with Pseudo-Ensembles
Philip Bachman
O. Alsharif
Doina Precup
25
594
0
16 Dec 2014
On the Inductive Bias of Dropout
D. Helmbold
Philip M. Long
30
70
0
15 Dec 2014
Collaborative Deep Learning for Recommender Systems
Hao Wang
Naiyan Wang
Dit-Yan Yeung
BDL
33
1,610
0
10 Sep 2014
An empirical analysis of dropout in piecewise linear networks
David Warde-Farley
Ian Goodfellow
Aaron Courville
Yoshua Bengio
46
106
0
21 Dec 2013
Improving neural networks by preventing co-adaptation of feature detectors
Geoffrey E. Hinton
Nitish Srivastava
A. Krizhevsky
Ilya Sutskever
Ruslan Salakhutdinov
VLM
266
7,634
0
03 Jul 2012
Previous
1
2