ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1306.6111
76
7
v1v2 (latest)

Predictability of User Behavior in Social Media: Bottom-Up v. Top-Down Modeling

26 June 2013
David M. Darmon
Jared Sylvester
M. Girvan
W. Rand
ArXiv (abs)PDFHTML
Abstract

Recent work has attempted to capture the behavior of users on social media by modeling them as computational units processing information. We propose to extend this perspective by explicitly examining the predictive power of such a view. We consider a network of fifteen thousand users on Twitter over a seven week period. To evaluate the predictability of the users, we apply two contrasting modeling paradigms: computational mechanics and echo state networks. Computational mechanics seeks to construct the simplest model with the maximal predictive capability, while echo state networks relax from very complicated dynamics until predictive capability is reached. We demonstrate that the behavior of users on Twitter can be well-modeled as processes with self-feedback. We find that the two modeling approaches perform very similarly for most users, but that users where the two methods differ in performance highlight the challenges faced in applying predictive models to dynamic social data.

View on arXiv
Comments on this paper