ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1306.6111
70
7
v1v2 (latest)

Understanding the Predictive Power of Computational Mechanics and Echo State Networks in Social Media

26 June 2013
David M. Darmon
Jared Sylvester
M. Girvan
W. Rand
ArXiv (abs)PDFHTML
Abstract

There is a large amount of interest in understanding users of social media in order to predict their behavior in this space. Despite this interest, user predictability in social media is not well-understood. To examine this question, we consider a network of fifteen thousand users on Twitter over a seven week period. We apply two contrasting modeling paradigms: computational mechanics and echo state networks. Both methods attempt to model the behavior of users on the basis of their past behavior. We demonstrate that the behavior of users on Twitter can be well-modeled as processes with self-feedback. We find that the two modeling approaches perform very similarly for most users, but that they differ in performance on a small subset of the users. By exploring the properties of these performance-differentiated users, we highlight the challenges faced in applying predictive models to dynamic social data.

View on arXiv
Comments on this paper