Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1306.3212
Cited By
Sparse Inverse Covariance Matrix Estimation Using Quadratic Approximation
13 June 2013
Cho-Jui Hsieh
Mátyás A. Sustik
Inderjit S. Dhillon
Pradeep Ravikumar
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Sparse Inverse Covariance Matrix Estimation Using Quadratic Approximation"
30 / 30 papers shown
Title
Learning the hub graphical Lasso model with the structured sparsity via an efficient algorithm
Chengjing Wang
Peipei Tang
Wen-Bin He
Meixia Lin
38
0
0
17 Aug 2023
GARNET: Reduced-Rank Topology Learning for Robust and Scalable Graph Neural Networks
Chenhui Deng
Xiuyu Li
Zhuobo Feng
Zhiru Zhang
AAML
58
22
0
30 Jan 2022
Distributed Estimation of Sparse Inverse Covariances
Tong Yao
S. Sundaram
23
1
0
24 Sep 2021
Certifiably Optimal Sparse Inverse Covariance Estimation
Dimitris Bertsimas
Jourdain Lamperski
J. Pauphilet
22
13
0
25 Jun 2019
Exploring Structure-Adaptive Graph Learning for Robust Semi-Supervised Classification
Xiang Gao
Wei Hu
Zongming Guo
GNN
20
1
0
23 Apr 2019
Capturing Between-Tasks Covariance and Similarities Using Multivariate Linear Mixed Models
Aviv Navon
Saharon Rosset
13
0
0
10 Dec 2018
Learning graphs from data: A signal representation perspective
Xiaowen Dong
D. Thanou
Michael G. Rabbat
P. Frossard
29
374
0
03 Jun 2018
An inexact subsampled proximal Newton-type method for large-scale machine learning
Xuanqing Liu
Cho-Jui Hsieh
J. Lee
Yuekai Sun
35
15
0
28 Aug 2017
Federated Multi-Task Learning
Virginia Smith
Chao-Kai Chiang
Maziar Sanjabi
Ameet Talwalkar
FedML
17
1,781
0
30 May 2017
Horde of Bandits using Gaussian Markov Random Fields
Sharan Vaswani
Mark W. Schmidt
L. Lakshmanan
21
14
0
07 Mar 2017
Randomized block proximal damped Newton method for composite self-concordant minimization
Zhaosong Lu
19
11
0
01 Jul 2016
Optimization Methods for Large-Scale Machine Learning
Léon Bottou
Frank E. Curtis
J. Nocedal
102
3,176
0
15 Jun 2016
A constrained L1 minimization approach for estimating multiple Sparse Gaussian or Nonparanormal Graphical Models
Beilun Wang
Ritambhara Singh
Yanjun Qi
24
12
0
11 May 2016
New Optimisation Methods for Machine Learning
Aaron Defazio
46
6
0
09 Oct 2015
High-dimensional robust precision matrix estimation: Cellwise corruption under
ε
ε
ε
-contamination
Po-Ling Loh
X. Tan
23
30
0
24 Sep 2015
Dropping Convexity for Faster Semi-definite Optimization
Srinadh Bhojanapalli
Anastasios Kyrillidis
Sujay Sanghavi
27
172
0
14 Sep 2015
Exact Hybrid Covariance Thresholding for Joint Graphical Lasso
Qingming Tang
Chao Yang
Jian Peng
Jinbo Xu
28
6
0
07 Mar 2015
Large-scale randomized-coordinate descent methods with non-separable linear constraints
Sashank J. Reddi
Ahmed S. Hefny
Carlton Downey
Kumar Avinava Dubey
S. Sra
29
19
0
09 Sep 2014
L0 Sparse Inverse Covariance Estimation
G. Marjanovic
Alfred Hero
29
38
0
05 Aug 2014
Learning Laplacian Matrix in Smooth Graph Signal Representations
Xiaowen Dong
D. Thanou
P. Frossard
P. Vandergheynst
29
28
0
30 Jun 2014
Proximal Quasi-Newton for Computationally Intensive L1-regularized M-estimators
Kai Zhong
Ian En-Hsu Yen
Inderjit S. Dhillon
Pradeep Ravikumar
51
31
0
27 Jun 2014
Scalable sparse covariance estimation via self-concordance
Anastasios Kyrillidis
Rabeeh Karimi Mahabadi
Quoc Tran-Dinh
V. Cevher
40
13
0
13 May 2014
G-AMA: Sparse Gaussian graphical model estimation via alternating minimization
Onkar Dalal
B. Rajaratnam
22
26
0
13 May 2014
Practical Inexact Proximal Quasi-Newton Method with Global Complexity Analysis
K. Scheinberg
Xiaocheng Tang
39
81
0
26 Nov 2013
Composite Self-Concordant Minimization
Quoc Tran-Dinh
Anastasios Kyrillidis
V. Cevher
49
94
0
13 Aug 2013
Node-Based Learning of Multiple Gaussian Graphical Models
Karthika Mohan
Palma London
Maryam Fazel
Daniela Witten
Su-In Lee
36
206
0
21 Mar 2013
Proximal Newton-type methods for minimizing composite functions
J. Lee
Yuekai Sun
M. Saunders
41
306
0
07 Jun 2012
Sparse Approximation via Penalty Decomposition Methods
Zhaosong Lu
Yong Zhang
47
208
0
10 May 2012
Convergence Properties of Kronecker Graphical Lasso Algorithms
Theodoros Tsiligkaridis
Alfred Hero
Shuheng Zhou
51
76
0
03 Apr 2012
Learning a Common Substructure of Multiple Graphical Gaussian Models
Satoshi Hara
Takashi Washio
CML
59
32
0
01 Mar 2012
1