Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1306.0940
Cited By
(More) Efficient Reinforcement Learning via Posterior Sampling
4 June 2013
Ian Osband
Daniel Russo
Benjamin Van Roy
Re-assign community
ArXiv
PDF
HTML
Papers citing
"(More) Efficient Reinforcement Learning via Posterior Sampling"
50 / 118 papers shown
Title
Are Large Language Models Reliable AI Scientists? Assessing Reverse-Engineering of Black-Box Systems
Jiayi Geng
Howard Chen
Dilip Arumugam
Thomas L. Griffiths
5
0
0
23 May 2025
Toward Efficient Exploration by Large Language Model Agents
Dilip Arumugam
Thomas L. Griffiths
LLMAG
95
1
0
29 Apr 2025
Fast and Robust: Task Sampling with Posterior and Diversity Synergies for Adaptive Decision-Makers in Randomized Environments
Yun Qu
Wenjie Wang
Yixiu Mao
Yiqin Lv
Xiangyang Ji
TTA
93
0
0
27 Apr 2025
Reinforcement Learning from Multi-level and Episodic Human Feedback
Muhammad Qasim Elahi
Somtochukwu Oguchienti
Maheed H. Ahmed
Mahsa Ghasemi
OffRL
57
0
0
20 Apr 2025
Minimax Optimal Reinforcement Learning with Quasi-Optimism
Harin Lee
Min-hwan Oh
OffRL
64
1
0
02 Mar 2025
Online Planning of Power Flows for Power Systems Against Bushfires Using Spatial Context
Jianyu Xu
Qiuzhuang Sun
Yang Yang
Huadong Mo
Daoyi Dong
88
0
0
24 Feb 2025
EVaDE : Event-Based Variational Thompson Sampling for Model-Based Reinforcement Learning
Siddharth Aravindan
Dixant Mittal
Wee Sun Lee
BDL
98
0
0
17 Jan 2025
Planning and Learning in Risk-Aware Restless Multi-Arm Bandit Problem
Nima Akbarzadeh
Erick Delage
Yossiri Adulyasak
46
0
0
30 Oct 2024
Efficient Model-Based Reinforcement Learning Through Optimistic Thompson Sampling
Jasmine Bayrooti
Carl Henrik Ek
Amanda Prorok
62
0
0
07 Oct 2024
SHIRE: Enhancing Sample Efficiency using Human Intuition in REinforcement Learning
Amogh Joshi
Adarsh Kosta
Kaushik Roy
OffRL
63
2
0
16 Sep 2024
Random Latent Exploration for Deep Reinforcement Learning
Srinath Mahankali
Zhang-Wei Hong
Ayush Sekhari
Alexander Rakhlin
Pulkit Agrawal
59
3
0
18 Jul 2024
Optimistic Q-learning for average reward and episodic reinforcement learning
Priyank Agrawal
Shipra Agrawal
63
4
0
18 Jul 2024
Reinforcement Learning and Regret Bounds for Admission Control
Lucas Weber
A. Busic
Jiamin Zhu
40
0
0
07 Jun 2024
Preparing for Black Swans: The Antifragility Imperative for Machine Learning
Ming Jin
59
2
0
18 May 2024
Multi-Agent Probabilistic Ensembles with Trajectory Sampling for Connected Autonomous Vehicles
Ruoqi Wen
Jiahao Huang
Rongpeng Li
Guoru Ding
Zhifeng Zhao
42
1
0
21 Dec 2023
Adaptive Interventions with User-Defined Goals for Health Behavior Change
Aishwarya Mandyam
Matthew Joerke
William Denton
Barbara E. Engelhardt
Emma Brunskill
34
1
0
16 Nov 2023
Posterior Sampling-based Online Learning for Episodic POMDPs
Dengwang Tang
Dongze Ye
Rahul Jain
A. Nayyar
Pierluigi Nuzzo
OffRL
60
0
0
16 Oct 2023
Provably Efficient Exploration in Constrained Reinforcement Learning:Posterior Sampling Is All You Need
Danil Provodin
Pratik Gajane
Mykola Pechenizkiy
M. Kaptein
44
0
0
27 Sep 2023
Settling the Sample Complexity of Online Reinforcement Learning
Zihan Zhang
Yuxin Chen
Jason D. Lee
S. Du
OffRL
98
22
0
25 Jul 2023
A Cover Time Study of a non-Markovian Algorithm
Guanhua Fang
G. Samorodnitsky
Zhiqiang Xu
43
0
0
08 Jun 2023
Provable and Practical: Efficient Exploration in Reinforcement Learning via Langevin Monte Carlo
Haque Ishfaq
Qingfeng Lan
Pan Xu
A. R. Mahmood
Doina Precup
Anima Anandkumar
Kamyar Azizzadenesheli
BDL
OffRL
35
20
0
29 May 2023
Bayesian Reinforcement Learning with Limited Cognitive Load
Dilip Arumugam
Mark K. Ho
Noah D. Goodman
Benjamin Van Roy
OffRL
42
8
0
05 May 2023
Sharp Deviations Bounds for Dirichlet Weighted Sums with Application to analysis of Bayesian algorithms
Denis Belomestny
Pierre Menard
A. Naumov
D. Tiapkin
Michal Valko
24
2
0
06 Apr 2023
Online Reinforcement Learning in Periodic MDP
Ayush Aniket
Arpan Chattopadhyay
33
2
0
16 Mar 2023
Wasserstein Actor-Critic: Directed Exploration via Optimism for Continuous-Actions Control
Amarildo Likmeta
Matteo Sacco
Alberto Maria Metelli
Marcello Restelli
OffRL
31
3
0
04 Mar 2023
VIPeR: Provably Efficient Algorithm for Offline RL with Neural Function Approximation
Thanh Nguyen-Tang
R. Arora
OffRL
58
5
0
24 Feb 2023
Model-Based Uncertainty in Value Functions
Carlos E. Luis
A. Bottero
Julia Vinogradska
Felix Berkenkamp
Jan Peters
41
14
0
24 Feb 2023
Reinforcement Learning in the Wild with Maximum Likelihood-based Model Transfer
Hannes Eriksson
D. Basu
Tommy Tram
Mina Alibeigi
Christos Dimitrakakis
26
1
0
18 Feb 2023
Learning How to Infer Partial MDPs for In-Context Adaptation and Exploration
Chentian Jiang
Nan Rosemary Ke
Hado van Hasselt
21
3
0
08 Feb 2023
Sharp Variance-Dependent Bounds in Reinforcement Learning: Best of Both Worlds in Stochastic and Deterministic Environments
Runlong Zhou
Zihan Zhang
S. Du
49
10
0
31 Jan 2023
STEERING: Stein Information Directed Exploration for Model-Based Reinforcement Learning
Souradip Chakraborty
Amrit Singh Bedi
Alec Koppel
Mengdi Wang
Furong Huang
Dinesh Manocha
24
8
0
28 Jan 2023
Decision-Focused Evaluation: Analyzing Performance of Deployed Restless Multi-Arm Bandits
Paritosh Verma
Shresth Verma
Aditya Mate
Aparna Taneja
Milind Tambe
21
0
0
19 Jan 2023
A Bayesian Framework for Digital Twin-Based Control, Monitoring, and Data Collection in Wireless Systems
Clement Ruah
Osvaldo Simeone
Bashir M. Al-Hashimi
38
28
0
02 Dec 2022
CIM: Constrained Intrinsic Motivation for Sparse-Reward Continuous Control
Xiang Zheng
Xingjun Ma
Cong Wang
36
1
0
28 Nov 2022
On Rate-Distortion Theory in Capacity-Limited Cognition & Reinforcement Learning
Dilip Arumugam
Mark K. Ho
Noah D. Goodman
Benjamin Van Roy
42
4
0
30 Oct 2022
Knowledge-Guided Exploration in Deep Reinforcement Learning
Sahisnu Mazumder
Bing-Quan Liu
Shuai Wang
Yingxuan Zhu
Xiaotian Yin
Lifeng Liu
Jian Li
50
4
0
26 Oct 2022
Opportunistic Episodic Reinforcement Learning
Xiaoxiao Wang
Nader Bouacida
Xueying Guo
Xin Liu
24
0
0
24 Oct 2022
Hardness in Markov Decision Processes: Theory and Practice
Michelangelo Conserva
Paulo E. Rauber
44
3
0
24 Oct 2022
On the Power of Pre-training for Generalization in RL: Provable Benefits and Hardness
Haotian Ye
Xiaoyu Chen
Liwei Wang
S. Du
OffRL
37
6
0
19 Oct 2022
A Provably Efficient Model-Free Posterior Sampling Method for Episodic Reinforcement Learning
Christoph Dann
M. Mohri
Tong Zhang
Julian Zimmert
OffRL
26
33
0
23 Aug 2022
Actor-Critic based Improper Reinforcement Learning
Mohammadi Zaki
Avinash Mohan
Aditya Gopalan
Shie Mannor
29
2
0
19 Jul 2022
Grounding Aleatoric Uncertainty for Unsupervised Environment Design
Minqi Jiang
Michael Dennis
Jack Parker-Holder
Andrei Lupu
Heinrich Küttler
Edward Grefenstette
Tim Rocktaschel
Jakob N. Foerster
51
13
0
11 Jul 2022
Offline RL Policies Should be Trained to be Adaptive
Dibya Ghosh
Anurag Ajay
Pulkit Agrawal
Sergey Levine
OffRL
40
45
0
05 Jul 2022
Model-based RL with Optimistic Posterior Sampling: Structural Conditions and Sample Complexity
Alekh Agarwal
Tong Zhang
59
22
0
15 Jun 2022
Horizon-Free Reinforcement Learning in Polynomial Time: the Power of Stationary Policies
Zihan Zhang
Xiangyang Ji
S. Du
35
21
0
24 Mar 2022
An Analysis of Ensemble Sampling
Chao Qin
Zheng Wen
Xiuyuan Lu
Benjamin Van Roy
49
22
0
02 Mar 2022
Sample-Efficient Reinforcement Learning with loglog(T) Switching Cost
Dan Qiao
Ming Yin
Ming Min
Yu Wang
48
28
0
13 Feb 2022
Differentially Private Regret Minimization in Episodic Markov Decision Processes
Sayak Ray Chowdhury
Xingyu Zhou
29
21
0
20 Dec 2021
Exploration-exploitation trade-off for continuous-time episodic reinforcement learning with linear-convex models
Lukasz Szpruch
Tanut Treetanthiploet
Yufei Zhang
32
24
0
19 Dec 2021
Recent Advances in Reinforcement Learning in Finance
B. Hambly
Renyuan Xu
Huining Yang
OffRL
40
168
0
08 Dec 2021
1
2
3
Next