ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1305.4482
  4. Cited By
A Bernstein-von Mises theorem for smooth functionals in semiparametric
  models

A Bernstein-von Mises theorem for smooth functionals in semiparametric models

20 May 2013
I. Castillo
Judith Rousseau
ArXivPDFHTML

Papers citing "A Bernstein-von Mises theorem for smooth functionals in semiparametric models"

28 / 28 papers shown
Title
Deep Horseshoe Gaussian Processes
Deep Horseshoe Gaussian Processes
Ismael Castillo
Thibault Randrianarisoa
BDL
UQCV
46
5
0
04 Mar 2024
Sparse Deep Learning for Time Series Data: Theory and Applications
Sparse Deep Learning for Time Series Data: Theory and Applications
Mingxuan Zhang
Y. Sun
Faming Liang
AI4TS
OOD
BDL
41
2
0
05 Oct 2023
Misspecified Bernstein-Von Mises theorem for hierarchical models
Misspecified Bernstein-Von Mises theorem for hierarchical models
Geerten Koers
Botond Szabó
A. van der Vaart
28
2
0
15 Aug 2023
Optimal plug-in Gaussian processes for modelling derivatives
Optimal plug-in Gaussian processes for modelling derivatives
Zejian Liu
Meng Li
23
6
0
20 Oct 2022
On the inability of Gaussian process regression to optimally learn
  compositional functions
On the inability of Gaussian process regression to optimally learn compositional functions
M. Giordano
Kolyan Ray
Johannes Schmidt-Hieber
53
12
0
16 May 2022
Finite samples inference and critical dimension for stochastically
  linear models
Finite samples inference and critical dimension for stochastically linear models
V. Spokoiny
28
2
0
17 Jan 2022
Statistical guarantees for Bayesian uncertainty quantification in
  non-linear inverse problems with Gaussian process priors
Statistical guarantees for Bayesian uncertainty quantification in non-linear inverse problems with Gaussian process priors
F. Monard
Richard Nickl
G. Paternain
25
35
0
31 Jul 2020
Posterior asymptotics in Wasserstein metrics on the real line
Posterior asymptotics in Wasserstein metrics on the real line
Minwoo Chae
P. De Blasi
S. Walker
25
6
0
12 Mar 2020
Uncertainty Quantification for Sparse Deep Learning
Uncertainty Quantification for Sparse Deep Learning
Yuexi Wang
Veronika Rockova
BDL
UQCV
36
31
0
26 Feb 2020
Accuracy of Gaussian approximation in nonparametric Bernstein -- von
  Mises Theorem
Accuracy of Gaussian approximation in nonparametric Bernstein -- von Mises Theorem
V. Spokoiny
Maxim Panov
6
9
0
14 Oct 2019
Nonparametric statistical inference for drift vector fields of
  multi-dimensional diffusions
Nonparametric statistical inference for drift vector fields of multi-dimensional diffusions
Richard Nickl
Kolyan Ray
25
51
0
03 Oct 2018
Nonparametric Bayesian analysis of the compound Poisson prior for
  support boundary recovery
Nonparametric Bayesian analysis of the compound Poisson prior for support boundary recovery
M. Reiß
Johannes Schmidt-Hieber
32
7
0
11 Sep 2018
Large Sample Asymptotics of the Pseudo-Marginal Method
Large Sample Asymptotics of the Pseudo-Marginal Method
Sebastian M. Schmon
George Deligiannidis
Arnaud Doucet
M. Pitt
22
31
0
26 Jun 2018
Bayesian Projected Calibration of Computer Models
Bayesian Projected Calibration of Computer Models
Fangzheng Xie
Yanxun Xu
8
34
0
03 Mar 2018
A Justification of Conditional Confidence Intervals
A Justification of Conditional Confidence Intervals
E. Beutner
Alexander Heinemann
Stephan Smeekes
24
14
0
02 Oct 2017
Bernstein -- von Mises theorems for statistical inverse problems II:
  Compound Poisson processes
Bernstein -- von Mises theorems for statistical inverse problems II: Compound Poisson processes
Richard Nickl
Jakob Sohl
31
36
0
22 Sep 2017
Efficient Nonparametric Bayesian Inference For X-Ray Transforms
Efficient Nonparametric Bayesian Inference For X-Ray Transforms
F. Monard
Richard Nickl
G. Paternain
16
57
0
21 Aug 2017
On the Bernstein-Von Mises Theorem for High Dimensional Nonlinear
  Bayesian Inverse Problems
On the Bernstein-Von Mises Theorem for High Dimensional Nonlinear Bayesian Inverse Problems
Yulong Lu
29
16
0
01 Jun 2017
Frequentist Consistency of Variational Bayes
Frequentist Consistency of Variational Bayes
Yixin Wang
David M. Blei
BDL
28
204
0
09 May 2017
Asymptotic frequentist coverage properties of Bayesian credible sets for
  sieve priors
Asymptotic frequentist coverage properties of Bayesian credible sets for sieve priors
Judith Rousseau
Botond Szabó
26
22
0
16 Sep 2016
Bayesian Sparse Linear Regression with Unknown Symmetric Error
Bayesian Sparse Linear Regression with Unknown Symmetric Error
Minwoo Chae
Lizhen Lin
David B. Dunson
33
15
0
06 Aug 2016
The semiparametric Bernstein-von Mises theorem for models with symmetric
  error
The semiparametric Bernstein-von Mises theorem for models with symmetric error
Minwoo Chae
12
3
0
18 Oct 2015
Asymptotic behaviour of the empirical Bayes posteriors associated to
  maximum marginal likelihood estimator
Asymptotic behaviour of the empirical Bayes posteriors associated to maximum marginal likelihood estimator
Judith Rousseau
Botond Szabó
34
56
0
19 Apr 2015
Gaussian Approximation of General Nonparametric Posterior Distributions
Gaussian Approximation of General Nonparametric Posterior Distributions
Zuofeng Shang
Guang Cheng
36
4
0
13 Nov 2014
Finite Sample Bernstein -- von Mises Theorem for Semiparametric Problems
Finite Sample Bernstein -- von Mises Theorem for Semiparametric Problems
Maxim Panov
V. Spokoiny
63
44
0
29 Oct 2013
On the Bernstein-von Mises phenomenon for nonparametric Bayes procedures
On the Bernstein-von Mises phenomenon for nonparametric Bayes procedures
I. Castillo
Richard Nickl
35
130
0
09 Oct 2013
On Bayesian supremum norm contraction rates
On Bayesian supremum norm contraction rates
I. Castillo
76
75
0
05 Apr 2013
A Bernstein-Von Mises Theorem for discrete probability distributions
A Bernstein-Von Mises Theorem for discrete probability distributions
S. Boucheron
Elisabeth Gassiat
115
49
0
14 Jul 2008
1